

E-Content

IFTM University, Moradabad

VISIBLE SPECTROSCOPY

- Introduction
- The wavelength range of visible radiations is 4000 to 8000 Å or (400 to 800 nm).
- Spectrophotometry is mainly concerned with the following regions of the spectrum; near ultraviolet (2000 to 4000 Å), visible (4000 to 8000 Å).
- Colorimetry is concerned with the visible region of spectrum.

LAWS GOVERNING ABSORPTION OF RADIATIONS

- When light is incident upon a homogeneous medium a part of the incident light is reflected, a part is absorbed by the medium and the remainder is allowed to transmit as such.
- If I denotes the incident light, I_r denotes the reflected light, I_a denotes the absorbed light, I_t denotes the transmitted light.
- The we can write-:

$$I = I_a + I_t + I_r$$
eq 1

Assuming I_r to be very small for dilute transparent solutions, the relationship becomes-:

$$I = I_a + I_t$$
eq 2

 The two separate laws governing absorption are generally known as Lambert's law and Beer's law.

Lambert's Law

- This law states that "When a beam of monochromatic radiation passes through a homogeneous absorbing medium, the rate of decrease in intensity of radiation with the thickness of absorbing medium is directly proportional to the intensity of the incident radiations".
- Mathematically the Lambert's law may be stated as follows-:

$$-\frac{dI}{dt} \propto I$$

$$-\frac{dI}{dt} = kI$$

$$-\frac{dI}{I} = kdt$$

Where

I = Intensity of Incident light or radiations

dI = Exceedingly small decrease in the intensity of radiation on passing through exceedingly small thickness, dt of the medium

k = Proportionality constant

- Let I₀ be the intensity of radiation before entering the absorbing medium (t=0).
- Then I_t will be the intensity of radiation after passing through any thickness, say (t) of the medium -:

Substracting Both the Sides

$$\begin{array}{ccc}
Un & \overline{\pm}t &=& -kt \\
\overline{\pm}t &=& e^{-kt} \\
\hline
\Sigma_0 &=& \overline{\pm}e^{-kt} &=& 0
\end{array}$$

We have

$$\frac{1}{2\cdot 3} = -k + we know$$

$$\frac{1}{2\cdot 3} = -k + un = 2 \cdot 3 \cdot 2 \cdot 6 \cdot \log \frac{1}{2} = -k + \frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

$$\frac{1}{2} = -\frac{1 \times k \times 4}{2 \cdot 3 \cdot 2 \cdot 6}$$

We know K = 0.4343 K So, [It = I 10-Kt]

- In eq 3, K is the absorption coefficient which is defined as-
- "It is the reciprocal of the thickness which is required to reduce the light to 1/10th of its intensity".
- So, K

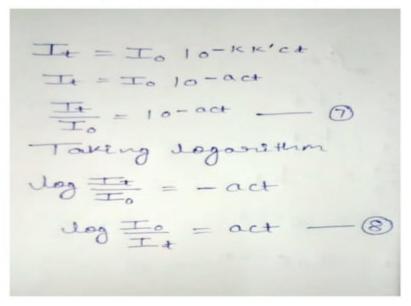
 1/t
- The ratio I_t / I_o is called transmittance (T).
 and the ratio log I_o / I_t is termed as absorbance.

Formally, Absorbance was termed as **Optical Density** (D) or extinction coefficient (E).

$$A = log I_0 / I_t = log 1/T = -log T$$

 Beer's law - "Intensity of incident light shows an exponential decrease with increase in the concentration of the absorbing medium."

$$I_t = I_0 e^{-k'c}$$
eq 4


 On changing the natural logarithm to the base 10

$$I_t = I_0 10^{-0.4343 \text{ k}'\text{c}} \dots eq 5$$

$$I_t = I_o 10^{-K'c}$$
eq 6

Where k' and K' are constants and c is the concentration of absorbing substance

On combining eq 3 and eq 6; we get

- Eq 8 is termed as Mathematical statement of Beer's -Lambert Law
- Here a is the absorptivity, a constant depends upon the wavelength (λ) of the incident light and the absorbing material

- If c is expressed in mole dm⁻³ and t is expressed in centimeters, then a is replaced by ε and is termed as Molar absorptivity or Molar extinction coefficient or Molar absorption coefficient.
- It is important to remark here that there exists a relationship between the absorbance (A), the transmittance (T) and the molar extinction coefficient ε; i.e.-:
- A = εct.....eq 9
- eq 9 may be put as follows-:
- ε=A/ct....eq 10
- If c=1 mole dm⁻³ and t = 1 cm; eq 10 becomes as -:
- ε=A.....eq 11
- From eq 11; it follows that the molar absorption coefficient is specific absorption coefficient for a concentration of 1 mole dm⁻³ and a path length of 1 cm.

DEVIATION FROM BEER'S LAW

- From Beer's law it follows that if we plot absorbance (A) against concentration (C), a straight line passing through the origin should be obtained.
- But there is usually a deviation from a linear relationship between concentration and absorbance and an apparent failure of Beer's law may ensure.
- Deviation from the law are reported as positive or negative according to whether the resultant curve is concave upwards or concave downwards.

Positive Negative Deviation Concentration

Deviation From Beer's Law may arise due to following factors-:

- Beer's law will hold over a wide range of concentration provided the structure of the colored ion or of the colored non-electrolyte in the dissolved state does not change with the concentration. If a colored solution is having a foreign substance whose ions react chemically with the colored components, its small concentration (foreign substance) may effect light absorption and may also alter the value of extinction coefficient.
- Deviation may occur due to presence of impurities.
- Deviation may occur if monochromatic light is not used.

- Deviation may occur if the width of the slit is not proper and therefore it allows undesirable radiations to fall on the detector.
- These undesirable radiations might be absorbed by the impurities present in the sample which would cause an apparent change in the absorbance of the sample.
- Chemical deviation results from chemical changes in the absorbing species For example, Acid-Base dye (Phenol red) undergoes a pH based transformation from yellow form (acidic) to red (basic) form showing that its absorption characteristics are dependent on pH which alters its chemical form.

INSTRUMENTATION

Radiation Source

- The following are the requirements of a radiation source:
- It must be stable.
- It must be of sufficient intensity for the transmitted energy to be detected at the end of the optical path.
- It must supply continuous radiation over the entire wavelength region in which it is used.
- The tungsten filament lamp is the most common source of visible radiations. The wavelength range of visible light lies between 4000 to 8000 Å.
- In this region tungsten-filament lamp is most widely used. Its construction is similar to the house hold lamp. However, it contains a piece of tungsten wire which is heated in a controlled atmosphere.

- In order to get best results, it is important that the tungsten lamp should emit radiant energy which should be constant over long period of time.
- This can only be achieved by employing a constant power supply.
- Tungsten is the most satisfactory material for lamp filaments but the carbon arc is used when a more intense source of visible light is required.

Filters

 A light filter is a device that allows light of the required wavelength to pass but absorbs or reflect light of other wavelengths wholly or partially.

- Thus a suitable filter can select a desired wavelength band. It means that a particular filter may be used for specific analysis.
- Filters are of two types-:
 - Absorption Filters- Absorption filters work by selective absorption of unwanted wavelengths.
 Dyed gelatin can be used as absorption filter.
 - Interference Filters- Narrower band widths are obtained with interference filters. These filters function on interference phenomenon at desired wavelengths, thus permitting rejection of unwanted radiations by selective reflection.

- In order to prepare interference filter, a semitransparent metal film is deposited on a plate of glass. Then it is coated with a thin layer of magnesium fluoride (MgF₂), followed by another coating of a thin film of metal. Finally another plate of glass is kept over the film.
- Interference filters provide narrower band-pass compared to absorption filters.
- They are inexpensive.

Note:

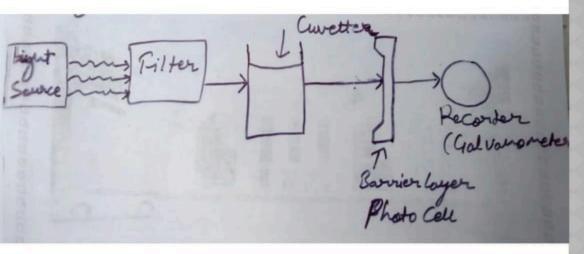
*An interference filter or dichroic filter is an optical filter that reflects one or more spectral bands or lines and transmits others.

Metal - tungsten

Monochromators

- The essential elements of a monochromator are an entrance slit, dispersing element (a prism or grating) and an exit slit.
- The function of a prism or grating is to disperse the heterochromatic radiation into its component wavelength.
- Material of construction of a prism should be selected with care to suit the range in which it has to work. For example, normal glass for the visual range, quartz for ultraviolet.

- There are two slits: Entrance slit and Exit slit
- The entrance slit sharply defines the incoming beam of heterochromatic radiations.
- Exit slit selects a narrow band of desired wavelength for observation by the detector.


Cells or Cuvettes

- The cell holding the sample (usually a solution) should be transparent to the wavelength region being recorded.
- For visible region, the cell is generally made of fused glass.
- The thickness of the cell is generally 1 cm.
- Cells may be rectangular or cylindrical in shape or cylindrical with flat ends.

Detector - Same as discussed in UV spectroscopy.

Power Supply - Same as discussed in UV spectroscopy.

EVELYN PHOTOELECTRIC COLORIMETER

Essential parts are as follows-:

- Source of light
- Colored glass filters for monochromatising light.
- Cuvette for keeping the sample and blank solvent.
- Photocell (Detector) to receive the radiation.
- A recorder (galvanometer)

- The cuvette is filled up with blank solvent (reference).
- It is positioned into the optical path and light shutter is open so that the meter reads full scale (100 % transmittance).
- Subsequently blank solvent is replaced by sample and is placed in light path in a cuvette. Then the meter will read the transmittance from which the absorbance of solution can be evaluated.

APPLICATIONS

For Quality Control of Samples

• In Industry many products are manufactured and there are chances of contamination. Colorimetry can be used to assess the quality and purity of finished products.

Qualitative Analysis

The percentage concentration of a substance in the given sample can be determined by absorption characteristics.

Structural Elucidation

- The structure of organic compounds can be elucidated using spectrophotometry. The absorbance spectrum of the test substance can be compared with the known ones.
- This helps to define the most probable structure of the given test sample.
- Other spectroscopic methods like IR Spectroscopy, NMR Spectroscopy, Mass Spectroscopy are also used for structure elucidation.

Determination of Geometrical Isomerism

Spectrophotometry is used to distinguish between cis and trans isomer of a compound.

THANK YOU