

E-Content

IFTM University, Moradabad

Contents

- Introduction
- · pH determination
- Buffer
- · Applications of buffer
- Buffer capacity
- · Buffer in pharmaceutical and biological system
- · Buffered isotonic Solution

Introduction

- · pH represents hydrogen ion potential.
- · It is defined as the common logarithm of the reciprocal of the hydrogen ion concentration.

Sorensen suggested simplified method of expressing hydrogen ion concentration

RANGE	COMMENT
0 to 7	ACIDIC
7 to 14	ALKALINE
7	NEUTRAL

pH Determination

1) Colorimetric method - pH paper

2) Electrometric method -pH meter

Applications of Electrometric method

- To find out the concentration of H+ ion.
- 2) To find out the concentration of OH- ion.
- 3) To find out the concentration of buffers to be added.
- To improve the stability, solubility and purity of given solution.

Buffers

- Buffers are compounds or mixtures of compounds that resist changes in pH, even after the addition of small quantities of acids or alkali.
- Buffers are classified as:

1) Acidic buffer -pH less than 7

 Its combination of weak acid and its salt. Eg: CH₃COOH & CH₃COONa.

2) Basic buffer -pH more than 7

Its combination of weak base and its salt. Eg: NH₄OH & NH₄Cl.

Applications of Buffers

- ➤ Maintenance of life
- ➤ Biochemical assay
- ➤In shampoos
- ➤ In brewing industry
- ➤ In textile industry
- ➤ In baby lotions

- Buffer equation- Also referred as Henderson Haselbalch equation. It is used to calculate the pH of the solution or to find out the concentration of H+ ions.
- Buffer Capacity- It is defined as the resistance offered by the buffer in the change pH on addition of small amount of acid or Base.
- It is also defined as the ratio of small increment caused by strong acid or strong bases causing small changes in the pH on its addition

Buffer Capacity

- Is defined as the resistance offered by the buffer in the change in pH on addition of small amount of acid or base.
- It is denoted by β .
- Buffer capacity is also defined as the ratio of small increment caused by strong acids or strong bases causing small change in the pH on its addition.

$$\beta = \frac{\Delta B}{\Delta p H}$$

Buffers in Pharmaceutical and Biological systems

· Buffers in Pharmaceutical systems

- Solid dosage form- to reduce gastric irritation caused by acidic drugs (Sodium bicarbonate, Mg Carbonate and sodium citrate.)
- Semi solid dosage forms- to maintain the stability during storage. (citric acid, sodium citrate or phosphoric acid)

- 3) Parentral Products- to maintain the pH near about blood pH 7.4, hence reduces tissue necrosis(pH> 10) and pain (pH< 3). (Citrate, Glutamate, Pthalate and acetate)
- 4) Opthalmic Products- to prevent increase in pH for maintaining of solubility and stability.

Buffers in Biological systems

- Primary buffer- in plasma (Carbonic acid/bicarbonate and acid/ alkali sodium salts of phosphoric acid.)
- Secondary buffer in erythrocytes (hemoglobin/ oxyhemoglobin and acid/alkali Potassium salts of phosphoric acid.
- Lacrimal fluid- tear (7.4) with pH range 7-8. Eye drop (4-10) not harm to cornea. pH ranges below 6.6 and above 9 may cause discomfort and flow of tear.

Buffered Isotonic solution

- Isotonic solution: refers to solutions having same osmotic pressure across a semipermeable membrane. Eg: 0.9% NaCl solution.
- Hypertonic solution: refers to solution where the concentration of solutes is greater outside the cell than inside it. Eg: 2% NaCl solution. It leads to cell shrinkage or crenation.
- Hypotonic solution: refers to solution where the concentration of solutes is greater inside the cell than outside it. Eg: 0.2% NaCl solution. It leads to swelling and finally hemolysis.

Tonicity and Measurements of tonicity

 Is the concentration of only the solutes that cannot cross the membrane since these solutes exert osmotic pressure on that membrane.

Methods:

- Hemolytic method
- Measurement of slight temperature differences.
- Calculating tonicity using Liso values.

Methods of adjusting Tonicity & pH

CLASS I METHOD

 Sodium chloride is added to drug solution to make it isotonic with body fluids.

CLASS II METHOD

 Water is added to drug solution to make it isotonic with body fluids.

