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ABSTRACT: An operationally simple and sustainable one-pot photo-oxidative formal [3 + 2] heterocyclization of f-ketothioamides
with aryldiazonium salts catalyzed by Ru(bpy);Cl, has been realized to provide 2,4-disubstituted S-imino-1,2,3-thiadiazoles in good
to high yields under mild reaction conditions for the first time. The reaction proceeded via an a-phenylhydrazone adduct of
thioamides leading to 1,2,3-thiadiazoles via N—S bond formation at room temperature. Notably, the products possess Z-
stereochemistry with regard to the exocyclic C=N double bond at the 5-position of the ring.

mong five-membered heterocyclic compounds, thiadia-

zoles have exciting potential as chemical therapeutics.
The distinctive 1,2,3-thiadiazoles have appeared as substruc-
tures in some bioactive molecules." Their widespread
applications have been applied to materials,” antimicrobials,
biological activities,” ® and herbicidal growth regulators7
(Figure 1). A valuable synthetic impression is associated with
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Figure 1. Biologically active 1,2,3-thiadiazoles.

its role of reactive intermediates in various transformations.”
Its bioisosteric abilities to replace carboxylic acids, esters,
carboxamides, and other broadly similar functionalities owe to
its vivacious synthetic utility.

Owing to their great synthetic and practical significance and
wide applications, over the years, numerous protocols have
been developed to construct the 1,2,3-thiadiazole skeletons.
The classical synthetic approaches including Hurd—Mori
synthesis,” Wolff synthesis,'” and Pechmann synthesis'"
among others'” have been reported. Recently, Tang and co-
workers'** reported an external oxidant-free, high-temperature
electrochemical approach to access 1,2,3-thiadiazoles via
introducing elemental sulfur into N-tosylhydrazones. (Scheme
la). A I,/CuCl,-promoted strategy for the construction of
1,2,3-thiadiazoles has been developed by Wu and co-workers
(Scheme 1b)."*" Moreover, a photocatalytic [4 + 1] annulation
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Scheme 1. Synthesis of 1,2,3-Thiadiazoles
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photo-oxidative formal
[3+2] heterocyclization

of azoalkanes with thiocyanates toward the synthesis of 1,2,3-
thiadiazoles is also reported'”® (Scheme 1c). Although the
recently reported approaches'**™ are practical implements
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Scheme 2. Scope of 1 and 2 for the Synthesis of Compounds 3a—3af’
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toward the edifice of 1,2,3-thiadiazoles, most of them are
tedious'* to modern synthetic chemistry practitioners.

In recent years, visible-light-mediated photocatalytic ap-
proaches have emerged as powerful synthetic tools for the
several chemical transformations. Their intrinsic characteristics
such as operational simplicity, safety, sustainability, and easy-
to-enable conditions make these protocols more popular than
traditional approaches."'® Visible-light-driven reactions have
opened a greener and economical pathway to construct
challenging C—C and C—heteroatom bonds.'” Recently,
metallo-photoredox catalysis has experienced noteworthy
advances in heterocyclization reactions via a reductive or
oxidative quenching process.'® Photocatalysis also provides an
opportunity to generate highly reactive intermediates with
unconventional reactivities.

For the successful synthesis of any targeted scaffold, a
judicious choice of substrates is a preliminary requirement.
Hence, for the synthesis of 1,2,3-thiadiazoles we prefer fS-
ketothioamide (KTA), one such substrate that has been well-
documented for the synthesis of various sulfur-containing
frameworks.'” Our laboratory has a long-standing interest in
thermal reactivity/transformation of KTAs to diverse hetero-
cyclic scaffolds.”” Very recently, we have devised a domino
protocol to access thiazoline derivatives employing KTAs.”'
Based on our experience, we became intrigued by studying the
photochemical reaction of diazonium salts with KTAs that
could be a viable alternative for valuable scaffolds. As part of
our ongoing project to investigate efficient synthetic methods
for thiadiazoles,”* herein we report the first visible-light-
sensitized photoredox catalytic aerobic oxidative heterocycliza-
tion of KTAs with aryldiazonium salts for the efficient
synthesis of 2,4-disubstituted $-imino-1,2,3-thiadiazole frame-
works (Scheme 1d). On the basis of a literature survey, this
visible-light-mediated metallo-photoredox strategy enabled N—
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S bond formation via a formal [3 + 2 ] heterocyclization route
to provide fully substituted 1,2,3-thiadiazole scaffolds has not
been documented so far.

To optimize the reaction conditions for the photooxidative
cyclization of fB-ketothioamides (KTAs) with diazonium salts,
our initial investigation began by using 3-oxo-N,3-diphenyl-
propanethioamide (1a, 0.5 mmol), tetrafluoroborate phenyl-
diazonium salt (2a, 0.5 mmol), Ru(bpy);Cl,-6H,0 (1.0 mol
%), and K,COj; (1.0 equiv) in acetonitrile at room temperature
in an open atmosphere under 1 W blue light (4., = 470 nm).
Gratifyingly, the reaction undergoes with the formation of a
new product, which was characterized as (Z)-(2-phenyl-5-
(phenylimino)-2,5-dihydro-1,2,3-thiadiazol-4-yl) (p-tolyl)-
methanone (3a) by spectroscopic ('H, and *C) and HRMS
analysis (Table S1, entry 1). In contrast to other preparations
of thiadiazoles,” ™" here the formation of product 3a is
accompanied by the initial formation of intermediate (Z)-3-
oxo-N-phenyl-2-(2-phenylhydrazono)-3-(p-tolyl)propane-
thioamide (I) at room temperature followed by its chemo-
selective intramolecular cyclization to desired thiadiazole
product 3a under photocatalysis. According to a thorough
literature survey, there is no previous report for the one-pot
synthesis of thiadiazole involving photo-oxidative heterocycli-
zation of f-ketothioamide (KTA) with diazonium salt.
Encouraged by the synthesis of (Z)-(2-phenyl-5-(phenyl-
imino)-2,5-dihydro-1,2,3-thiadiazol-4-yl) (p-tolyl)methanone
3a via photocatalysis, further optimization of reaction
parameters was carried out by varying the photocatalyst,
solvent, base, and light source to enhance the efficacy of the
reaction, as summarized in Table S1. Use of other metal
photocatalysts such as ([Ir{dFCF;ppy},(bpy)]PFs) (P2) and
organic photocatalysts such as eosin Y (P3), alizarine red S
(P4), and rose bengal (PS) could not illustrate better
photocatalytic activity than Ru(bpy);CL.6H,0 (P1) (Table
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S1, entries 2—5). Hence, P1 is established as a suitable catalyst
for the formation of 3a. Next, to optimize the catalytic loading,
2.0 mol % of Ru(bpy);Cl,-6H,0 is found to be superlative for
the model reaction, providing product 3a in 60% yield within
12 h (Table S1, entry 6). Moreover, increments in the catalytic
loading (3.0 mol %) could not demonstrate any notable
improvement in the result (Table S1, entry 7). Subsequently,
the impact of diverse solvents was tested for this domino
process. Use of solvent DCM instead of ACN yielded product
3a in 57% and was found almost equally effective (Table S1,
entry 8). Solvents DMSO and DMF were found to be
advanced to that of ACN in terms of both time and yield
(Table S1, entries 9 and 10). Moreover, the model reaction in
EtOH and MeOH could not provide better result than ACN
(Table S1, entries 11 and 12). Therefore, a brief investigation
of various solvents indicated that solvent DMF was the best
choice for the further optimization (Table S1, entry 10). Next,
we optimized the loading of base. When the loading of K,COj;
was increased from 1.0 to 2.0 equiv in DMF, the yield of 3a
increased from 70% to 86% within 8 h (Table S1, entry 13).
Further increments of base loading (3.0 equiv) as well as using
a strong inorganic base such as Cs,COj; did not exhibit any
noteworthy change in the yield and reaction time. The above
observation suggested that the higher loading and basic
strength did not show any significant impact on the outcome
of the reaction (Table S1, entries 14 and 15).

The reaction without blue LED light (in dark box) under
otherwise identical reaction conditions yielded 3a in a trace
amount (5%) (Table S1, entry 16). The reaction in inert
atmosphere under otherwise optimized conditions yielded the
desired product in 8% after 24 h (Table S1, entry 17). The
temperature of the surrounding reaction mixture remained
close to 30 °C throughout the reaction period due to the use of
1 W blue LED, signifying the photochemical nature of the
reaction. To demonstrate the effect of wavelength of different
light sources, the model reaction was performed with a white
(40 W, LED bulb) and a green (1 W, A,,, = 530 nm) LED.
The yield of the desired product 3a decreased noticeably (65
and 75% respectively, Table S1, entries 18 and 19).
Consequently, the proficient wavelength for this trans-
formation was found to be 470 nm (1 W blue LED). After
the complete screening of the model reaction under various
conditions, the optimized conditions for this reaction were
determined as 1a (0.5 mmol), 2a (0.5 mmol), P1 (2.0 mol %),
and K,CO; (2.0 equiv) in DMF (5 mL) at room temperature
under 1 W blue LED irradiation for 8 h in open air (Table S1,
entry 13, see the SI for details).

With the optimized reaction conditions in hand, next we
investigated the substrate scope and limitations of the protocol
employing a wide range of variously substituted S-ketothioa-
mides (1a—1u, Scheme 1) and aryldiazonium tetrafluoroborate
salts (2a—2f, Scheme 1). As shown in Scheme 2, a range of
thioamides have been introduced, providing the corresponding
desired product 3 in good to excellent yield. To demonstrate
the electronic and steric effects of various substituents R' and
R? in thioamides, a range of thioamides bearing both electron-
donating (Me, OMe) and electron-withdrawing (Cl, Br, CF;)
groups at their particular positions are studied. All of these
thioamides are well tolerated under optimized reaction
conditions and provide the desired products in 50—86% yields
(Scheme 2, 3a—3h). Notably, the products derived from
thioamides containing halogen (e.g, chloro and bromo)
substituents are attractive because of their further synthetic
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applications. Remarkably, KT As with a multisubstituted aryl as
the R! moiety, such as 3,4-OCH,0C4H; and 3,4,5-
(OCH,;);C4H,, afforded the corresponding desired products
in 49% and 55% vyields, respectively (Scheme 2, 3i, 3j).
Importantly, when the R' moiety was changed to a 7-electron-
rich motif such as 2-furyl or 2-thienyl and an electron-deficient
3-pyridyl substituent, the corresponding desired products were
obtained in 58%, 64%, and 52% yield, respectively (Scheme 2,
3k, 31, and 3m). To further elaborate the substrate scope, we
also introduced thioamides bearing R' as an extended aromatic
system, such as 2-naphthyl and biphenyl groups, to provide the
corresponding thiadiazoles in 50% and 51% yields, respectively
(Scheme 2, 3n, 30).

Further, the R' moiety appended with aliphatic moieties
such as isobutyl and cyclopropyl groups afforded the
corresponding products in 52% and 65% yields, respectively
(Scheme 2, 3p, 3q). To further illustrate the broad synthetic
utility and generality of our one-pot photo-oxidative
heterocyclization, we intended to employ R* as a substituted-
phenyl group. Accordingly, thioamides bearing 4-methylphenyl
and 4-methoxyphenyl groups as R* gave their corresponding
desired products 3r and 3s in 78% and 82% yields, respectively
(Scheme 2). The yield obtained was comparable with one
isolated from unsubstituted R?, i.e.,, phenyl moiety 3a (Scheme
2, 86%); hence, the substituted phenyl group as R* did not
demonstrate any obvious electronic effects. On the other hand
when the R? phenyl group was switched to an alkyl group such
as methyl or ethyl, unfortunately, the photocatalytic cyclization
of their respective adducts lead a very unclear TLC pattern
(formation of several inseparable undesired products and no
expected product could be formed). The resulting complexity
may be due to the strong basic nature of the nitrogen atom
attached with alkyl fragments (which make nitrogen more
basic due to the +I effect). Hence, the possibility of other side
reactions is very high under light, thus limiting the scope of
photocyclization up to some extent (Scheme 2, 3t, 3u).
Moreover, we also investigated the effect of R® on the efficacy
of this protocol. We explored the scope of the reaction with
different substituted aryl diazonium salts. When the R* moiety
was swapped with various electron-donating and electron-
withdrawing motifs such as p-methyl, p-methoxy, p-chloro, p-
nitro, and 2,4,6-trimethyl, the corresponding desired products
were obtained in good yields (Scheme 2, 3v, 3w, 3x, 3y, and
3z). Further, when R' moiety was swapped to either an
electron-donating or electron-withdrawing group along with a
para-substituted electron-donating or electron-withdrawing
group at R% the resultant desired products were obtained in
moderate to good yields (Scheme 2, 3aa—3af). Consequently,
the reported Ru(Il)-catalyzed photo-oxidative cyclization of
thioamides with aryldiazonium salts allows a novel entry of
various fully substituted 1,2,3-thiadiazole scaffolds 3a—af,
which were difficult to prepare via previously reported
methods.

To validate the synthetic utility of synthesized 1,2,3-
thiadiazoles 3, we performed the oxidation and reduction of
two representative compounds 3a and 3s, respectively. The
oxidation of compound (Z)-phenyl(2-phenyl-S-(phenylimi-
no)-2,5-dihydro-1,2,3-thiadiazol-4-yl)methanone (3a) with m-
CPBA in DCM yielded an open-chain product 3-oxo-N,3-
diphenyl-2-(2-phenylhydrazineylidene) propanamide (4,
90%),in excellent yield. On the other hand, reduction of
compound (Z)-(5-((4-methoxyphenyl)imino)-2-phenyl-2,S-
dihydro-1,2,3-thiadiazol-4-yl) (phenyl)methanone (3s) with
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NaBH, in methanol successfully reduced exocyclic imine bond
and provided (S-((4-methoxyphenyl)amino)-2-phenyl-2,3-di-
hydro-1,2,3-thiadiazol-4-yl) (phenyl)methanone (5, 72%), an
amino derivative of 3s, in good yield (see the SI for details).

The structures of all newly synthesized compounds 3a-af; I,
4, and 5 were fully characterized by spectral ("H and "*C
NMR) and HRMS analysis. Moreover, the structure of (Z)-(2-
phenyl-5-(phenylimino)-2,5-dihydro-1,2,3-thiadiazol-4-yl) (2-
(trifluoromethyl)phenyl)methanone (3h) was also established
by single-crystal X-ray diffraction analysis (see the SI for
details).

On the basis of control experiments (see the SI for details)
and previous literature reports,23 the following tentative
mechanism has been postulated (Scheme 3). The first step

Scheme 3. Proposed Reaction Pathway

0 HN-Ph 0 N"Ph
~Ph I .
O HN R}H/\S. :RAS,/kS
1 N N N.
R NI S Nsy NH
. | A
Ph
NH (Ru (I*/Ru(l) Ph
1+2— > ﬂPh =+ 0.77V) o nePh
oh Ru(ll)’ Ru(l) -H |
o} iN ) RV s
RWLH/‘\SH Blue LED (470 nm) /0, NN
Ne 3 Ph
N [0,
Bh Ru(ll) 0,
1, isolated (R" = 4-MeCgH,)
E = +0.72V

of the reaction involved the formation of intermediates I
(isolated for the synthesis of 3b and fully characterized via
spectral studies and HRMS analysis) at room temperature,
which undergo the oxidation (E,, = +0.72 V) via excited
photocatalyst (Ru(I)*/Ru(I) = +0.77 V)**° through a
reductive quenching process to generate thiyl radical A (see
the SI for details). Concurrently, molecular oxygen completes
the catalytic cycle via oxidation of Ru(I) to Ru(Il) and
generates a reduced superoxide ion O,°”. Thiyl radical A
undergoes subsequent oxidation via superoxide ion O, to
generate product 3 and eliminate O,>” as a byproduct.

In conclusion, we described a mild photocatalytic route for
1,2,3-thiadiazoles by reacting f-ketothioamides with aryl
diazonium salts under visible-light irradiation. The reaction
proceeds smoothly at room temperature using air as oxidant,
thus making this strategy operationally simple and eco-
compatible while exhibiting excellent functional group
tolerance. Thus, it provides an environmentally benign
synthesis of thiadiazoles employing a photo-oxidative hetero-
cyclization pathway as an alternative to conventional routes.
The reported protocol allows a straight alternative to access
thiadiazoles symmetrical to the existing ones, thus elaborating
the chemistry of f-ketothioamides.
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