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Abstract An attempt has been made to explore the geo-
metric effects of f (R) action on the galactic dynamics under
the weak field approximation. The rotational velocity is cal-
culated beyond the Einstein’s geometric theory of gravity. It
is inspired by the cosmological geometric relation obtained
in the power-law f (R) gravity model in vacuum. We analyse
the action with a small positive deviation from the Einstein–
Hilbert gravity action (taking R as f (R) ∝ R1+δ) at the
galactic scales for the explanation of the flatness paradox
associated with the clustered galactic dark matter. We obtain
the contribution of a dynamical f (R) cosmological back-
ground geometry on accelerating the test mass. Furthermore,
the integrated effective acceleration of the test mass due to a
massive spherically symmetric source in f (R) background
is calculated via the study of geodesics for the suitable space-
time metric and an equation for the effective rotational veloc-
ity has been developed. We test the viability of the proposed
model by tracing the motion of a test mass far from the disk of
galactic matter for smaller δ. The possible galactic rotational
velocity curves in f (R) background are discussed for the
formula obtained with δ << 1. We also obtain constraints
on δ O(10−6) confirmed by observations.

1 Introduction

Theoretical modelling of the observed strange behaviour of
the galactic rotation curves [3–6], the gravitational lensing
phenomenon (in the case of special cluster (1E 0657-558)
[7,8], the Supernovae Ia observation [9–11], etc., in the stan-
dard of theory of gravity, general relativity (GR), motivates
one to include some dark components of about 95% of the
total energy content of the universe. This dark sector fits well
in the theoretical cosmological models in the GR framework
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and explains the current observations of cosmology at dif-
ferent redshifts (z), i.e., at galactic and extragalactic scales.
On this basis, it reveals itself in two different features: (i)
dark matter (≈ 27%) with zero pressure which is further cat-
egorized into baryonic (like Massive Astronomical Compact
Halo Objects-MACHOs) or non-baryonic (like non-standard
elementary particles–axions), and (ii) dark energy (≈ 68%)
with negative pressure, following the Planck data 2018 [12].
Basically, the observable signature of the clustered dark mat-
ter is also associated with low redshifts, and hence scientists
have been engaged to trace its presence in different ground-
and space-based projects. On the other hand, unclustered dark
energy is mainly associated with a high redshift.

However, there is a big question mark in front of these dark
components and all possible efforts to remove this are still
under progress. Thus, this has become the major challenge
in the current field of cosmology. Observational cosmology
requires the presence of such dark components, but experi-
mentally we are not able to pinpoint them through different
projects, viz., LHC, IceCube, XENON-100, DAMA/LIBRA,
CDMS II, Large Synoptic Survey Telescope, DES, and the
proposed Dark Energy Space Telescope or Destiny.

Alternatively, as per the Einstein’s geometric tensorial
equations, one can make an attempt to specifically obtain
the geometry of spacetime corresponding to the observations
at different redshifts (z) via modifying the Einstein–Hilbert
gravity action. Generally, the literature describing the gravity
theory beyond Einstein is vast and one can recast the mod-
ified gravity action into scalar–tensor, tensor–vector–scalar,
higher order gravity theory, etc. [13–20]. Initial reproduc-
tions of the observed rotation velocity profile without dark
matter include the Milgrom’s modification of Newtonian
dynamics [21–23]. Also, one of the simplest modifications
of the standard Einstein’s general relativistic (GR) dynamics
is obtained just by taking R as f (R) and hence we have
an extra degree of freedom called the scalaron (or scalar
field). Initially, the study of the gravity theory via higher
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order Lagrangians was introduced by Buchdahl [24] and was
subsequently carried out by Starobinsky for the study of cos-
mic evolution [25–27]. Thereafter, serious efforts have been
made in this field for the theoretical explanation of the major
observational issues via f (R) cosmology [28–35].

Some important characteristic features of the f (R) gravity
regarding the screening mechanism and Noether symmetry
(in particular, the emergence of a scaling length in a power-
law f (R) model), useful for our work, are discussed in [36–
41], although the field of f (R) cosmology is very vast. Such
features may lead one to mimic dual behaviour for the expla-
nation of dark energy and dark matter for a unique power-law
f (R) model or scalar field model [42–44]. Some important
implications of f (R) or scalar field cosmology have been
discussed in [45–48].

Apart from this, motivated by the Schwarzschild-like solu-
tion of the Einstein equations with a cosmological constant,
i.e., Schwarzschild–de Sitter spacetime metric, one can also
argue in an alternative way that the modification in the theory
of gravity can influence the local geodesics and may explain
the observational consequences (such as the flatness profile of
rotation curves) on the galactic dynamics as well. We attempt
to address this issue within f (R) framework. Several impor-
tant researches done so far in GR framework, signify the
effects on the local dynamics due to the present status of the
cosmological background. In precision cosmology, one can
choose the quintessence, phantom or scalar fields to inves-
tigate such possibility instead of making the straight choice
for the cosmological constant (�) term [49–54]. Here, we
want to emphasize a remarkable feature of the Schwarzschild
spacetime metric, i.e., the Einstein equations become linear
for such a spacetime metric and hence it is possible to com-
bine or superpose different solutions.

In principle, the study of the effects of expansion (or accel-
eration) of the background universe on the local system can
be traced back to the gravitational action of the background
universe which is in favour of Mach’s principle in cosmology.
Here, we study such effects on the galactic dynamics for the
explanation of clustered galactic dark matter problem in the
power-law f (R) model via a suitable spacetime metric ele-
ment under the weak field limits for the test mass (hydrogen
atom). It is also an important task in cosmology to obtain an
unique spacetime metric element which can clearly interpo-
late between local (Schwarzschild static metric) and global
scales (non-static FLRW (Friedmann–Lemaitre–Robertson–
Walker) metric) and hence may join the two solutions.

Thus, we work with the specific f (R) model which has
a small positive deviation parameterized by δ from the stan-
dard Einstein–Hilbert action for the explanation of galactic
dark matter by taking R as f (R) = R1+δ

Rδ
c

; Rc is the weight

constant in f (R) background having the dimension of the
Ricci scalar. Hence, the key idea in the present paper is to

modify the spacetime geometry according to the form of the
power-law f (R) gravity model and study its effects on the
galactic dynamics by exploring the spacetime metric element
in the weak gravitational field limit for the explanation of
clustered galactic dark matter problem. We, therefore, obtain
the solution of the f (R) model in terms of the scale factor
a(t) and then calculate an integrated effective acceleration
equation in the presence of a massive spherically-symmetric
source of mass M for a test mass in f (R) background via
the study of a suitable spacetime metric in the Newtonian
limit. Next, we develop an equation for the rotational veloc-
ity in the dynamical f (R) background i.e., f (R) �= R for
the bounded system.

Accordingly, our work is organized as follows. In
Sect. 2, the dynamics of f (R) model inspired by the Ricci
scalar curvature (R) is discussed. In Sect. 3, the solution and
the potential of the f (R) background is obtained. In Sect.
4, we discuss the local geodesics in f (R) background via
the suitable spacetime metric element in the weak gravita-
tional field limit and calculate the effective f (R) rotational
velocity equation and further investigate its behaviour for
the model parameter δ. We discuss the galactic dynamics for
the possible fits beyond the luminous disk of galaxy matter
by exploring the galactic scaling parameter r0 in the effec-
tive f (R) rotational velocity equation for the typical galactic
data with δ << 1 in Sect. 5. We conclude and discuss our
work in Sect. 6.

Throughout the paper, we use the signature of the space-
time metric (−,+,+,+), the indices μ, ν = 0, 1, 2, 3 and
c = h̄ = 1.

2 Curvature scalar inspired f (R) dynamics

The main motivation to work with the fourth order grav-
ity, i.e., f (R) is that it may fill the gap of the dark sec-
tors without actually requiring them to be in the strange
or exotic form under the suitable stability conditions of
the f (R) model. Here, we assume that the background
universe is homogeneous, isotropic and spatially flat. This
is given by the Friedmann–Lemaitre–Robertson–Walker
(FLRW) spacetime metric as

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (1)

where a(t) is the time dependent cosmological scale factor
and (r, θ, φ) are the usual spherical polar coordinates. The
f (R) dynamics in such a spacetime is governed by the 4-
dimensional modified gravity action with the standard mat-
ter,

A =
∫

d4x
√−g

[
1

16πG
f (R) + Lm(gμν,�m)

]
, (2)
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where Lm is the Lagrangian of the standard matter com-
ponent with the matter field �m , g is the determinant of
the metric tensor gμν and G is the Newtonian gravitational
constant. In the metric formalism, the modified gravity field
equations are obtained by varying the action integral (2) w.r.t.
gμν ,

F(R)Rμν − f (R)gμν

2
− ∇μ∇νF(R)

+gμν�F(R) = 8πGT (m)
μν , (3)

where F(R) is the first derivative of f (R) w.r.t. the Ricci
scalar R, Rμν is the Ricci curvature tensor, �(≡ ∇μ∇μ)

is the covariant Laplacian, T (m)
μν is the energy–momentum

tensor of matter and ∇μ is the covariant derivative associ-
ated with the Levi-Civita connection of the metric. We can
also rewrite Eq. (3) in the standard form of modified Einstein
tensor equations,

Gμν = 8πG

F(R)

[
T (c)

μν + T (m)
μν

]
, (4)

where

T (c)
μν = 1

8πG

[
1

2
gμν f (R) − R

2
gμνF(R)

+∇μ∇νF(R) − gμν�F(R)
]

(5)

is the energy–momentum tensor of the spacetime curva-
ture. Here, it is to be noted that the Ricci scalar is dynam-
ical if f (R) �= R, otherwise the theory gets reduced to
the standard GR. Also, the constant function, f (R), added
or subtracted from the Ricci scalar of the Einstein–Hilbert
gravity action acts like the Einstein’s cosmological con-
stant.

Thus, the dynamical form of f (R) introduces a new
degree of freedom, called the scalaron, which can explain
various cosmological phenomena at different redshifts. Also,
the extra curvature term which appears in Eq. (4), apart from
the usual Einstein tensor (Gμν) in the vacuum case, will
determine the existence of dark matter or dark energy.

Now, from Eq. (1), we can obtain an equation for the Ricci
scalar:

R = 6[2H2 + Ḣ ], (6)

where H is the Hubble expansion parameter and the overdot
represents the cosmic time derivative. Also, from the field
equations of f (R) for the vacuum case we find

3F(R)H2 = 1

2
[F(R)R − f (R)] − 3H Ḟ(R). (7)

Here, we address the problem of clustered dark matter at the
galactic scales by considering a mild modification of gravity
of the form

f (R) = R1+δ

Rδ
c

, (8)

where Rc is the weight constant and has the dimension of the
Ricci scalar, while δ is a dimensionless quantity which we
assume to be small. Such a model can explain the signature
of clustered dark matter at low redshifts in the rotational
velocity profiles of Hα and HI outside the typical galaxies in
the f (R) background [39–41,55–57].

We can simply investigate the role of the power-law f (R)

model for the parameter δ that signifies the deviation from
GR for the explanation of the background evolution. For the
small deviation parameterized by δ, we can perform a Taylor
expansion of Eq. (8) as

f (R) ≡ R1+δ ≈ R + δg(R) + O(2) . . . . (9)

For δ << 1, we have from Eq. (9)

f (R) ≈ R + δg(R). (10)

Equation (10) looks similar to the Einstein–Hilbert gravity
action with the cosmological constant term (�), only if the
second term is constant. The variation of Eq. (10) w.r.t. R thus
suggests the role of the power-law model in determining the
dynamical background evolution, since f (R) �= R.

We now proceed to obtain the background geometry of the
spacetime for such a model by solving the modified gravity
field equations for the vacuum case.

Making use of Eq. (6), we express the time derivative ( d
dt )

as

d

dt
≡ dH

dt

d

dH
= Ḣ

d

dH
=

(
R

6
− 2H2

)
d

dH
. (11)

Next, we use Eqs. (8) and (11) in Eq. (7) and obtain

(R − 12H2)

(δ − 1)

[
H

dR

dH
δ(1 + δ) − Rδ

]
= 6RH2. (12)

On using Eq. (6) in Eq. (12), we get

6δ Ḣ

[
H

dR

dH
(1 + δ) − R

]
− R2(δ − 1)

2

+3RḢ(δ − 1) = 0, (13)

which can be solved further on dividing Eq. (13) throughout
by RH to give

6

[
dR

Rdt

]
δ(1 + δ) − 3δ

[
dH

Hdt

]
− 3

[
dH

Hdt

]

−
[

R

2H

]
(δ − 1) = 0. (14)

Now, using Eq. (6) in the last term of Eq. (14), we get

6

[
dR

Rdt

]
δ(1 + δ) − 6δ

[
dH

Hdt

]
+ 6H(1 − δ) = 0, (15)

which can be solved to give
[
R

R0

]δ(1+δ)

=
[
ȧ(t)

ȧ(t0)

]δ

(1 + z). (16)
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In this approach, the cosmological evolution naturally
relates to the behaviour of f (R) spacetime geometry at very
low cosmological redshifts for the explanation of clustered
galactic dark matter whose dynamics can be expressed as

R ≈ R0

[
H

H0

] 1
1+δ

. (17)

This solution sets the relation between R and H with R0

and H0 as the constants representing the present values of
the Ricci scalar curvature and the Hubble expansion param-
eter, respectively. Using such a cosmological solution, it is
possible to study its effect on the local galactic dynamics.
This provides us with strong motivation to draw the cosmo-
logical dynamics close to the galactic environment as dealt
with next. In the further sections, we do this via joining the
cosmological background solution with the local solution.

3 Calculation of potential for the f (R) background

We proceed with Eq. (11) and explore the behaviour (or solu-
tion) of the scale factor a(t) for the proposed geometric form
of f (R) model. Therefore, from Eq. (17), we get
∫

da

a(t)
=

∫
HdH

R
6 − 2H2

, (18)

which gives

a(t) = a0

⎡
⎢⎢⎣

1 − χ
(

H
H0

) 1+2δ
1+δ − χ

⎤
⎥⎥⎦

1+δ
2+4δ

, (19)

where χ = R0
12H0

2 and a0 is the present value of the scale
factor. Now, Eq. (19) can be recast as

H = ȧ

a
= H0

⎡
⎣χ − (χ − 1)

(
a

a0

)−
(

2+4δ
1+δ

)⎤
⎦

1+δ
1+2δ

. (20)

We can easily obtain the contribution of the dynamical f (R)

cosmological background geometry in the case of an accel-
erating test mass:

ä = H0
2

a3

[
χa

2+4δ
1+δ − (χ − 1)a0

2+4δ
1+δ

] 1
1+2δ

×
[
χa

2+4δ
1+δ + (χ − 1)a0

2+4δ
1+δ

]
. (21)

Since a0 > a always, so for the f (R) background geome-

try, the acceleration of the test mass in f (R) = R(1+δ)

Rδ
c

type

models is negative for χ ≈ 1
2 (obtained by using the current

standard model of cosmology, i.e., the �-CDM model, which
estimates the value of R0 ≈ 6H2

0 ), i.e., the test mass is decel-
erated in this f (R) background geometry, which is a feature

favourable for the explanation of the observable signature
of clustered galactic dark matter on the galactic dynamics.
Hence, the potential of the f (R) background geometry for
the test mass will be given by using the basic kinematic def-
inition

V f (R) = −
∫

ä da. (22)

Thus, we have from Eqs. (21) and (22) the spacetime back-
ground f (R) potential,

V f (R) = −H0
2

2a2

[
χa

2+4δ
1+δ − (χ − 1)a0

2+4δ
1+δ

] 2(1+δ)
1+2δ

, (23)

where all symbols have the usual meaning as mentioned ear-
lier.

It is interesting to determine the effects of this background
f (R) potential on the local dynamics and also to obtain the
rotational velocity profile for the test mass [54–56].

4 Local geodesics and rotational velocity in f (R)
background

The spherically symmetric Schwarzschild-like spacetime
metric has the unique feature that it can reduce the Einstein
field equations to the linear form so that we can superpose
different solutions and the Schwarzschild–de Sitter metric
emerges as one of its important consequences. The motiva-
tion to investigate the effects of background evolution on
the local dynamics comes from this Schwarzschild–de Sitter
spacetime metric which involves the cosmological constant
(�) along with the Newtonian term and hence opens the pos-
sibility to investigate the equations of motion. Alternatively,
instead of using the cosmological constant term (�), one can
choose the quintessence, phantom or scalar fields to explore
such a possibility [49–54]. The modification of the gravity
action generally introduces extra degrees of freedom in the
form of a scalar field. Therefore, in order to analytically dis-
cuss the local geodesics in the f (R) background, it is crucial
to choose the specific spacetime metric element from which
the geodesic equations can be determined, and hence one
may consider joining different solutions.

Several serious efforts have been made so far in order
to generalize the spacetime metric element which can inter-
polate between local and global scales [51,52,54]. Baker
has discussed different approaches regarding this problem
[51,52]. However, we still do not have the detailed and unique
form of such an interpolating spacetime metric. Hence, with
the solutions motivated by spherical symmetry, we can gen-
eralize the Schwarzschild spacetime metric element outside
the spherically symmetric source in comoving and isotropic
coordinates in the weak gravitational field limit [54,58],
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ds2 ≈ −
(

1 − 2GM

a(t)ρ

)
dt2 + a(t)2

×
[
dρ2 + ρ2

(
dθ2 + sin2 θ dφ2

)]
, (24)

where ρ is the comoving radial coordinate such that ρ = r
a(t) .

Because of the spherical symmetry of the Schwarzschild
metric element, we confine our attention to the test mass
motion in the equatorial plane (θ = π

2 ). Therefore, the effec-
tive radial equation of motion for a test mass in the weak
gravitational field limit is

r̈e f f = ä

a
r − GM

r2 . (25)

An alternative way to obtain Eq. (25) in the weak field limit
is discussed in [51,52,59].

The solution of modified gravity is obtained in terms of
the scale factor in Sect. 3. Therefore, we can join the two
solutions.

Now, we study the implication of this equation in the f (R)

background via developing the rotational velocity equation
for the bounded system. In order to support the study of
the similar effects of the clustered galactic dark matter sig-
nature on the rotational velocity profile via the spectro-
scopic measurement of hydrogen atom (test mass) at local
scale, we study the nearby bounded system in the proposed
f (R) spacetime geometry background. Thus, it is possible
to rewrite Eq. (23) using the Planck system (c=h̄=1) of units
(such that a0

a = r0
r ), as

V f (R) = −H0
2

2r2

[
χr

2+4δ
1+δ − (χ − 1)r0

2+4δ
1+δ

] 2(1+δ)
1+2δ

. (26)

Here, we regard r0 as the f (R) background free length scale
parameter at the galactic scales according to [39–41], which
is a fundamental feature of power-law f (R) gravity. There-
fore, it may be the size of spherical galactic halo of scalaron
clouds apart from the dark matter halo (measured in kpc),
needed for the explanation of the flatness profile in the outer
region of galaxy.
Thus, for the bounded motion of the test mass under the
influence of gravitating body in the f (R) background, we
can develop the rotational velocity by using Eq. (25) and the
basic kinematic definition

v � √| r̈eff r |. (27)

We have the rotational velocity of the test mass in f (R)

background geometry

v2 � GM

r
+ (χ)(

2+2δ
1+2δ

) H0
2 r2

[
1 + (χ − 1)

χ

(r0

r

)2( 1+2δ
1+δ

)
]

×
[

1 − (χ − 1)

χ

(r0

r

)2( 1+2δ
1+δ

)
] 1

1+2δ

, (28)

Fig. 1 The theoretical effective f (R) rotation velocity curve for a typ-
ical massive galaxy shows the variation w.r.t. the parameter δ < 1 with
r0
r > 1

Fig. 2 The theoretical effective f (R) rotation velocity curve w.r.t. the
model parameter δ << 1 with r0

r > 1. It shows that the rotational
velocity attains a constant value for different values of the parameter δ.
The smaller value of δ seems to be consistent with the explanation of
the effects of dark matter on the rotational velocity of the test mass in
the outer regions of the galaxy

where the current value of H0 (from the Planck data), H0 =
67.4 ± 0.5 km s−1 Mpc−1 [12], the value of the Newtonian
gravitational constant, G = 4.3 × 10−6 kpc km2 s−2 M −1	
and χ(= R0

12H2
0
) ≈ 1

2 .

The first term of Eq. (28) predicts the Keplerian curve for
the constant mass (hence a point source), whereas the second
term is due to the f (R)background contribution. As we move
away from the mass concentration M , the anomaly in the rota-
tional velocity can be explained without any particulate dark
matter but through the mild modification of Einstein–Hilbert
gravity. The behaviour of the effective f (R) rotational veloc-
ity curve for different values of δ is plotted in Figs. 1 and 2.

Figure 1 shows that f (R) rotational velocity decreases for
slightly higher values of δ, while in Fig. 2, it remains constant
for δ ≈ 10−6. Hence, in contrast to both figures, the choice of
the smaller value of the model parameter δ is preferred. The
rotational velocity is unaffected for different smaller values
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of the model parameter δ. Thus, it is interesting to explore
the galactic dynamics for the smaller values of δ.

5 Galactic dynamics via effective f (R) rotational
velocity

Before exploring the galactic dynamics, it is important to
make a comment on the formula developed in Eq. (28). This
formula will only be used for the acceleration due to point
sources. A general development of the rotational velocity
formula requires its integration with the disk density profile
such that the system is treated as an extended source [55–57].
We will not attempt to solve such an integrated system here
and plan to do this by including the Tully–Fisher relation in
our future work.

Here, we discuss the simple formula in f (R) spacetime
background by treating the gravitating system (galaxies) as a
point source. Hence, Eq. (28) suggests that we can fit only the
velocities of test stars and Hα and HI profiles that rotate quite
far from the disk of the matter of the galaxy. The flatness pro-
file of the galaxy rotation curves is actually associated with
this region. Therefore, we trace the test mass in such region
according to Eq. (28). For instance, if we assume our galaxy
to be a point source and trace the test mass profile beyond
its typical disk size (≈ 15 kpc) in f (R) spacetime back-
ground with the estimated mass, M ≈ (7 ± 2.5)× 1011M⊙,
then we get the observed velocity fit [60,61] for the model
parameter δ ≈ 10−6 on scaling the f (R) background galac-
tic free parameter (r0). On the basis of the plot of our Milky
Way obtained for the f (R) rotational velocity as in Fig. 3,
we argue that beyond the typical galactic size, the rotational
curve exhibits a nearly constant velocity profile, which is a
nice feature of our theoretical model. This nature arises only
because of the f (R) spacetime background potential. There
is an initial rise observed in the rotational velocity beyond
the visible boundaries of the typical galaxy. Such a bump is
also observed in the THINGS (The HI Nearby Galaxy Sur-
vey) rotation curve at about 15 kpc, which is considered to
be the source of information of the test mass motion along
the two stretched spiral arms [62]. Since we do not consider
any dark matter profile, it may be due to the fact that beyond
the disk of galaxy matter, the geometric effect of the f (R)

background becomes significant for the suitable values of the
model parameter δ and the galactic scaling parameter r0 and
hence we get the expected result. Generally, the outer rota-
tion curves are not perfectly flat in the sense that the velocity
gradient, i.e., dV

dr , is zero. But there is some specific range of
radii over which the galactic velocity profile is nearly con-
stant. However, for those cases where extended galactic data
is available, the flattening profile of the rotation curves has
always been noticed [62].

Fig. 3 Theoretical galactic rotation curve external to the typical vis-
ible end of the Milky Way galaxy. The black dots show the observed
galactic rotation curve in the outer region of galactic luminous disk of
matter [60,61]. The dashed curve is the theoretical rotation curve in
f (R) background beyond the galactic disk matter demonstrating that
the galaxy can be treated as a point source having the typical mass
(7 ± 2.5) × 1011M⊙ and galactic size (about 15 kpc). The plot is
obtained for δ ≈ 10−6 with the galactic scale parameter r0 = 102.623

kpc ≈ 419.280 kpc

Now, for exploring the actual trace of the test mass accord-
ing to Eq. (28), we prefer to use those galaxies for which the
rotation velocity data point is available far from the disk of
galaxy matter. For instance, we take the data for NGC 3198
from [63,64] and plot the modified rotational velocity curve
versus distance. In Fig. 4, the outer profile of the rotation
curve for NGC 3198 is shown.

Thus, as an important diagnostic test of the proposed
model for the clustered dark matter at the local galactic
scales, we find a nice agreement for the rotational velocity
profile obtained with the modified rotation velocity formula
in an extended manner, which matches with the observed
behaviour of the rotational velocity curve far from the galac-
tic disk of matter [60,61,63,64].

6 Summary and conclusion

We have studied the power-law f (R) gravity model for the
explanation of the clustered galactic dark matter problem
proposing the cosmological background geometry. We have
discussed the suitable spacetime geometry and the line ele-
ment in the weak field limit for the bounded system for
obtaining the integrated effective acceleration profile of the
test mass in f (R) cosmological background geometry along
with its Newtonian profile and furthermore we calculated the
effective f (R) rotational velocity. The variation of the effec-
tive f (R) rotational velocity with the model parameter is
discussed in Figs. 1 and 2. We have explored the rotational
velocity expression for the point sources only and would
attempt to generalize it for the extended system by integrat-
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Fig. 4 The rotation curve external to the typical galactic disk of matter
for the galaxy NGC 3198. The dots show the observed [63,64] behaviour
in the outer region of galactic luminous disk of matter. The dashed line
shows the theoretically predicted rotation curve far from the galactic
disk matter with M ≈ 11.0 × 1010M⊙. The plot is obtained with
δ ≈ 10−6 and the galactic scale parameter r0 = 102.250 kpc ≈ 177.80
kpc

ing it with the disk density profile and also by including the
Tully–Fisher relation in our future work. Therefore, the cal-
culated formula for the f (R) rotational velocity is suitable
for the discussion of those galaxies for which the data points
(corresponding to the flat rotational velocity profile) were
available far from the disk of galaxy matter as the flatness
problem is primarily associated with such regions. The pos-
sible fits of the f (R) rotational velocity profile are discussed
in Figs. 3 and 4 via the free galactic scaling parameter for
a particular system. Such an emergence of an extra scaling
length is a characteristic feature of any power-law f (R) grav-
ity model, which is clearly discussed in [39–41]. This extra
scaling length in our case may be the size of the spherical
galactic halo of scalaron clouds. If this is so, then a further
constraint can be imposed on δ via the lensing angle also.
However, we find the constraint on the f (R) model param-
eter (δ) via the rotational velocity profile of typical massive
gravitating systems (galaxies) to be O(10−6).

Our result closely matches with the result of Clifton’s
work [1,2], where the constraint on δ is identified within
the PPN (Parameterized-Post Newtonian) formalism for the
same model via discussing the effects of expansion on the
equation of motion for a test mass with the help of suitable
spacetime metric; the constraints on δ from the Cassini Space
probe are obtained: δ = −1.1 ± 1.2 × 10−5. Also, our result
is generally different from the result of Capozziello et al. and
other authors because we work with point sources (constant
mass) only [55–57]. They reported a large deviation in the
exponent of the power-law f (R) gravity (which ranges from
1.2 to 2.5) to explain the observed behaviour of the galactic
rotation curves for different luminosity profiles of galaxies.

Hence, for a point-like source in f (R) cosmological back-
ground geometry, we have extended galactic rotational veloc-
ity profiles, sufficient to tackle the flatness issue.
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