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It is shown that the structures in the universe can be interpreted to show a closed wheel of
time, rather than a straight arrow. An analysis in f(R) gravity model has been carried
out to show that due to local observations, a small arc at any given spacetime point
would invariably indicate an arrow of time from past to future, though on a quantum
scale it is not a linear flow but a closed loop, a fact that can be examined through future
observations.
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1. Introduction

The cosmological arrow of time has been explained in cyclic universe without any
dissipation in the presence of scalar field.1 The cosmological arrow of time may be
linked to the thermodynamic arrow by the second law of thermodynamics. The time
asymmetry is also associated with dissipative fluid as Tolman introduced a viscous
fluid to generate an arrow of time in cyclic cosmology.2 Eddington once related an
arrow to the increase of entropy in isolated systems.3 There is an approach related
with the entropy of a system in which time asymmetry might be a feature of a
subsystem to which we belong and therefore time’s arrow may be perspectival.4

It is also shown by some authors that the dark energy (positive cosmological con-
stant) further supports the time asymmetry.5 One of the most suitable candidates
for dark energy is the cosmological constant Λ,6 even though we do not know its
precise origin, in addition to the issues related with the coincidence and fine tuning
problems. The other approaches to explain the dark energy include modified grav-
ity models7–9 and the modified matter models.10,11 Among the former class, f(R)
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dark energy models are included as the simplest modified gravity models.12–14 The
time asymmetry is shown in f(R) gravity using the dissipation of the scalar field.18

In the present paper, we study the issue of the arrow of time in the f(R) gravity
background.

In Sec. 2, we determine the form of potential due to f(R) term in the modified
gravity model by using the solutions of the field equations of f(R) = αR2 dark
energy model.15 In Sec. 3, we show a local arrow of time by taking the perturbations
in a time dependent larger mass M(t). Finally, results are concluded in Sec. 4.

2. Dynamics of Effective f(R) Potential

A class of f(R) dark energy models attempt to explain the early inflation as well
as the present cosmic accelerated expansion without using any exotic matter com-
ponent.14 For the spatially flat Friedmann–Robertson–Walker (FRW) metric given
as

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2θdφ2)], (1)

with a(t) as the scale factor, the Ricci scalar is given by

R = 6(2H2 + Ḣ), (2)

where H is the Hubble parameter and the overdot represents the derivative with
respect to time. In the absence of matter (or with negligible matter), the [00]
component of the dynamical equation for f(R) model in the metric formalism gives

3FH2 =
(FR − f)

2
− 3HḞ, (3)

where F (R) = ∂f
∂R = f ′(R) and the overdot denotes the derivative with respect to

time. Using the expression for Ricci scalar, it is possible to write

d

dt
= Ḣ

d

dH
=
(

R

6
− 2H2

)
d

dH
. (4)

Substituting Eq. (4) into Eq. (3), we get

3H

(
R

6
− 2H2

)
f ′′(R)

dR

dH
=

(f ′(R)R − f(R))
2

− 3H2f ′(R). (5)

For f(R) = αR2 model, where α is a constant, Eq. (5) becomes

(R − 12H2)
(

H
dR

dH
− R

2

)
= 0. (6)

The Ricci scalar from Eq. (6) as function of Hubble parameter H is given by

R(H) = R0

(
H

H0

) 1
2

, (7)
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where R0 and H0 are constants. Using Eqs. (2) and (7), we obtain
da

a
=

HdH

Ḣ
=

HdH

R0H
1
2

6(H0)
1
2
− 2H2

. (8)

On integration Eq. (8) gives

a(t) = a0




χ −
(

H

H0

) 3
2

χ − 1




−1
3

, (9)

where a0 is a constant and χ = R0
12H2

0
, whereas an inversion of this expression yields

H = H0

[
χ − (χ − 1)

(
a

a0

)−3
] 2

3

. (10)

We consider the motion of a particle of unit mass, m = 1 in the gravitational field of
another mass M , which is very large in comparison to the mass of the test particle.
Here, we have an extra potential due to the f(R) gravity background. Specifically,
the contribution of f(R) = αR2 model to the acceleration of a test mass m in the
field of a larger mass M � m can be obtained by using Eqs. (9) and (10). From
Eq. (10), we have

H =
ȧ

a
= H0

[
χ − (χ − 1)

(
a

a0

)−3
] 2

3

, (11)

which gives

ȧ = aH0

[
χ − (χ − 1)

(
a

a0

)−3
] 2

3

. (12)

Now, differentiating Eq. (12) with respect to time and using Eq. (9) for scale factor
a(t), we obtain the acceleration given as

ä =
H2

0 [χa3 + (χ − 1)a3
0][χa

3
2 − (χ − 1)a3

0a
−3
2 ]

1
3

a
5
2

, (13)

where ä represents the second derivative of distance with respect to time t. Inte-
grating equation (13) with respect to a we found the potential due to f(R) gravity.
It is given by

Vf (a) = −
∫

äda = −1
2
H2

0

(
(a3χ − (χ − 1)a3

0)
4
3

a2

)
. (14)

We can ignore the terms containing higher orders in the denominator for large a.
Then, the potential Vf (a) becomes

Vf (a) = −1
2
H2

0χ
4
3 a2. (15)
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The potential due to the mass M is

VM (a) = −GM

a
. (16)

Here, we would have the potential due to the mass M with an additional part due
to the f(R) = αR2 model. If l is the constant magnitude of the angular momentum
of the test particle, then the total effective potential is given by

V (a) =
l2

2a2
− GM

a
− 1

2
H2

0χ
4
3 a2, (17)

whereas, the energy of the test particle of unit mass is given by

E =
ȧ2

2
+ V (a). (18)

The energy of the test particle is conserved before the appearance of the potential
term due to the f(R) effects, and it would be conserved with this potential also,
owing to the fact that it is a function of distance only. Thus, under the prevail-
ing conditions, the corresponding forces behave as the conservative forces and the
conservation of energy is given by

d

dt

(
1
2
ȧ2 +

l2

2a2
+ V (a)

)
= 0. (19)

Before the addition of potential due to f(R) gravity, the total effective potential is
given by

V (a) =
l2

2a2
− GM

a
, (20)

and after the addition of extra potential due to f(R), we obtain the total potential
given by Eq. (17).

The motion of the test particle is influenced by the matter mass M and the
f(R) gravity. The term l2

2a2 in Eq. (17) arises from the total angular momentum
of the system. Since the problem depicts the spherically symmetry, the angular
momentum vector L is conserved. It is always perpendicular to the radius vector r.
If L = 0, then the motion will be along a straight line through the center of force.
This is the case of central force motion. For simplicity, we can replace it by a hard
wall imposed at small distance a0.

We consider the characteristic scale of energy as Ē and that of distance as ā,
and write V (a) = ĒV (r) in terms of the dimensionless r = a

ā and V (r). Therefore,
the potential V (a) can be written as

V (r) = −β

r
− γ

2
r2, r ≥ r0, (21)

where β = GM , γ = H2
0χ

4
3

2 and r > r0 is the hard wall-condition. We have

r0 =
a0

ā
. (22)
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Fig. 1. (Color online) The effective potential V (r) along y-axis versus distance r along x-axis.
Red curve is for (β = γ = 1) and r0 = 0.10. Blue curve stands for β = 0.50 and γ = 1 and
r0 = 0.10, and the green curve is plotted for β = 2 and γ = 1 and r0 = 0.10.

The potential is maximal at

rm =
(

β

γ

) 1
3

(23)

and its maximum value is

V (rm) = −3
2
(β)

2
3 γ

1
3 . (24)

The conditions for bounded and unbounded motion are given by V (rm) > E >

V (r0) and V (r0) < V (rm) < E, respectively. The maximal potential V (rm) and
maximal distance rm depend upon β and γ. The behaviour of the above effective
potential is shown in Fig. 1.

3. Classical Arrow but Quantum Wheel of Time

We consider the thermodynamic equilibrium of a single particle system in statistical
mechanics where the energy of the system is conserved. This is defined by the
microcanonical ensemble of the system. Now the energy of the system is defined by
the mass M of the massive body and it can be taken as a parameter of the system.
If the mass M changes slowly, the energy of the system also varies and is described
by the adiabatic invariant quantity16

I =
∮

pdq, (25)

where p is the generalized momentum and q is the generalized coordinate. We take
the motion in one degree of freedom, therefore the phase-space is two-dimensional
with coordinates r and p. Thus, the adiabatic invariant quantity in our case is

I =
∫∫

(dp)(dr). (26)
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We have p =
√

2(E(t) − V (r)), therefore the adiabatic invariant becomes

I =
∫ r̄

r0

dr
√

(2(ε(t) − V (r, β(t))), (27)

where ε(t) = E(t)

Ē
and r̄ is the radial distance for which the motion of the particle

is admissible.
The logarithm of the adiabatic quantity I provides the entropy of the system.

The conservation of I is related with the second law of thermodynamics. For a
given β(t) and γ(t), r̄(t) is always smaller than the largest possible distance of the
bounded motion:

r̄(t) ≤ rm(t) =
(

β

γ

) 1
3

. (28)

Now, we take the slow perturbation in the larger mass M . Since adiabatic invari-
ant describes the energy, and the change in mass affects the energy of the system, so
the adiabatic invariant is affected by any changes in mass. There are two approaches
in which the perturbation in the mass M can be taken.

(1) When M(t) ∝ β(t) decreases slowly. During the slow decrease of α(t), ε(t)
grows faster than maximal potential energy φ(rm). Here, the change in α(t)
is slow, otherwise, ε(t) will not change much and will stay bound. It is shown
in Fig. 2 where the dashed curve represents the maximum value of potential
energy φ(rm) for α = β = γ = 1 and r0 = 0.10. The curves below the dashed
line refers to a bounded motion. It is clear that when α(t) decreases slowly, this
motion becomes unbounded, i.e. its energy rises above the dashed line.

(2) When M(t) ∝ β(t) increases. In this case, energy ε(t) and the potential V (rm),
both increase when the mass increases slowly. But, if the variation in the mass
is sudden, then the Hamiltonian changes while the state of the ensemble does
not change. Therefore, the energy of the system does not change very much

2 4 6 8
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Fig. 2. (Color online) The effective potential V (r) along y-axis versus distance r along x-axis.

Red curve stands for (β = γ = 1) and r0 = 0.10, while the green curve is for β = 0.50 and γ = 1
and r0 = 0.10. Dashed curve is plotted for V (rm) for β = γ = 1 and r0 = 0.10.
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Fig. 3. (Color online) The effective potential φ(r) along y-axis versus distance r along x-axis.
Red curve is plotted for (β = γ = 1) and r0 = 0.10. Green curve for β = 2 and γ = 1 and
r0 = 0.10. Dashed curve is V (rm) = −2.38, β = γ = 1 and r0 = 0.10. Thin line is an example of
finite motion at energy ε = −3. When β slowly changes from β = 1 to β = 2, the energy decreases
and always refers to finite motion. If β changes sufficiently fast, the initial energy does not change
much and the motion becomes unbounded.

and the system becomes unbounded,17 it is shown in Fig. 3. Therefore, in both
scenarios, the motion changes from bounded to unbounded. This is an example
of irreversibility of time.

The detailed structural analysis of cosmic matter distribution shows that the
maximal Lyapunov exponent is given by

1
t

ln
mod δz(t)

δz0
→

√
λ (29)

for t → ∞. It determines the increasing phase-space volume over small arc of time.
However, the Lyapunov spectrum over the global cosmic scales leads to a closed
Hamiltonian with constant phase volume, resulting in a constant entropy. This
implies the existence of a closed loop of time perhaps as a wheel, over the scales of
Lyapunov time when the nearby trajectories are well resolved for the stability of
the universe.

4. Conclusion

We have argued that the large scale structures with the background f(R) contri-
bution to potential must show a repulsive order causing the unbounded motion of
the test particles such that the phase-space volume remains constant over those
scales. We found an asymmetry resulting due to the unbound motion of the ini-
tially bound system. Owing to this fact, any local observation of structures would
invariably reveal a straight arrow of time just like a tangent to a small local arc of
a circle or loop. However, on the quantum scales, the future analysis is expected to
show that the time axis must turn into a wheel and the usual arrow of time would
have vanishing features.
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