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ARTICLE INFO ABSTRACT

Keywords: Raphanus sativus (R. sativus), commonly known as radish, has been widely utilised in traditional medicine,
Raphanus sativus particularly in Traditional Chinese Medicine (TCM), due to its numerous medicinal properties. This study
Radish

thoroughly analyses the pharmacological and therapeutic potential of R. sativus, highlighting its bioactive
components, such as glucosinolates, flavonoids, phenolic acids, and isothiocyanates. These phytochemicals have
shown various pharmacological actions, including antioxidant, anti-inflammatory, anticancer, antidiabetic, and
antibacterial properties. Recent breakthroughs in nanotechnology-based drug delivery systems have enhanced
the solubility, stability, and bioavailability of bioactive substances, thereby improved their therapeutic effec-
tiveness and broadened their potential uses in contemporary medicine. However, several challenges remain,
including variability in phytochemical composition, a lack of comprehensive clinical studies, and the absence of
standardized extraction and formulation protocols. Future investigations should focus on the isolation and
characterization of novel bioactive compounds, elucidation of their mechanisms of action, and assessment of
their potential synergistic effects with existing pharmaceuticals or medicinal plants. Integrating modern phar-
macological approaches with traditional medicinal knowledge holds significant potential for the development of
innovative natural therapeutics derived from Raphanus sativus, thereby contributing to the advancement of
evidence-based herbal medicine.

Traditional Chinese Medicine
Pharmacological potential

1. Introduction growing interest in plant-based pharmacotherapy and natural product

research has renewed scientific attention toward the pharmacological

Raphanus sativus, commonly known as radish, is a root vegetable
belonging to the Brassicaceae family, widely cultivated and consumed
across various regions of the world, particularly in Asia, Europe, and the
Mediterranean [1,2]. Traditionally valued for its pungent flavor and
nutritional benefits, Raphanus sativus has also been extensively
employed in diverse traditional medicine systems, including Ayurveda,
Traditional Chinese Medicine (TCM), and Unani [3]. The taxonomical
classification and common name of Raphanus sativus is shown in Tables 1
and 2. Phytochemical investigations have revealed that R. sativus is rich
in bioactive compounds, including Alkaloids, Gibberellins, Glucosino-
lates, Phenolic compounds, Polysaccharides, Proteoglycans, and sulfur
compounds [4,5]. These systems have long recognised radish as a potent
therapeutic agent, especially in the management of antioxidant [6],
anti-bacterial, antifungal [7], anticancer [8], anti-inflammatory, anti-
diabetic [9], and cardioprotective effects [10]. In recent decades,
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potential of this often-overlooked root.

Despite its long-standing medicinal use and demonstrated thera-
peutic properties in various in vitro and in vivo models, R. sativus re-
mains underutilised in modern pharmacological and clinical
applications. One of the main limitations lies in the poor bioavailability,
rapid degradation, and systemic instability of many of its phytocon-
stituents, which hinder their translation from bench to bedside. In
response to these challenges, nanotechnology-based drug delivery sys-
tems have emerged as a promising avenue to enhance the solubility,
stability, permeability, and targeted delivery of herbal bioactives [12,
13]. Nanomedicine, particularly the incorporation of phytoconstituents
into nanoparticles and nanoemulsions etc. has demonstrated consider-
able potential in improving the pharmacokinetic and pharmacodynamic
profiles of plant-derived compounds. Recent studies have explored the
encapsulation of Raphanus sativus extracts or isolated compounds into
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Table 1
Taxonomical Classification of R. sativus [11].

Kingdom Plantae- Plantes, Planta, Vegetal Plants
Subkingdom Infrakingdom- Streptophyta Land Plants
Class Magnoliopsida

Order Brassicales

Family Brassicaceae

Species Raphanus sativus L.

Genus Raphanus L. R sativus

Division Tracheophyta

Table 2

Local names of R. sativus in various countries.
Country Local Name
Japan Daikon
Germany Radies, Rettig
France Radis
Philippines Labanos
Italy Radice, Ravono
India Radish
Pakistan Daikon radish
Sri Lanka Hordi

nanocarriers, aiming to optimise their therapeutic performance while
minimising toxicity and enhancing site-specific delivery [14]. This re-
view aims to provide a comprehensive examination of the pharmaco-
logical properties and nanomedical applications of Raphanus sativus,
starting with an overview of its phytochemical composition and tradi-
tional uses. It further explores its multifaceted pharmacological activ-
ities, followed by a critical analysis of emerging nanotechnological
interventions designed to address its delivery challenges. By integrating
traditional knowledge with contemporary nanoscience, this article aims
to illuminate the prospects of Raphanus sativus as a viable candidate in
plant-based nanomedicine, ultimately bridging the gap between eth-
nopharmacology and modern therapeutic innovation.

2. Methodology

In this review, we conducted a comprehensive literature search using
several online databases, including Scopus, Web of Science, Google
Scholar, and PubMed covering studies from 1983 to 2024. A total of 204
articles were thoroughly analysed, of which 136 were selected for
detailed discussion based on their relevance, study quality, and contri-
butions to the subject. The selection criteria for articles included
experimental studies and reviews that examined the bioactive compo-
nents, therapeutic effects, and nanocarrier applications of TCM in
R. sativus. The analysis emphasised the bioactivity of natural com-
pounds, including their anti-inflammatory, antioxidant, and anticancer
properties, with a focus on nanocarrier-based delivery systems.

3. Morphology of Raphanus sativus
3.1. Seeds

The seeds are small, oval to oblong in shape, and slightly flattened
(Fig. 1). The colour of reddish-brown to dark brown, sometimes with a
rough texture. The seed weight varies, generally falling between 2.5 and
4 mg per seed. Radish, which is indeed widely used in traditional
medicine across China, Japan, Korea, and Southeast Asia. In Chinese
medicine, it has various therapeutic uses and is believed to possess
properties that aid in digestion, detoxification, and respiratory health. It
is also considered a "cooling" food, helping to balance heat in the body
[15]. In TCM it is used to treat constipation, hypertension and chronic
trachea infection [16,17].
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Fig. (1). Anatomical parts of Raphanus sativus plant highlighting its major
components leaves, peel, root, and seeds. The figure was created using Bio-
Render (www.biorender.com) (accessed 05 Feb 2025).

3.2. Leaves

The leaves of R. sativus are expanded, plumy, crudely, intended to
have curvature suggestive of a lyre (Fig. 1). Leaves vary in size
depending on the cultivar and growth stage, typically ranging from 5 to
30 cm in length [17]. Radish leaves are used in Ayurveda and TCM
medicine to stimulate digestion and relieve constipation due to their
high fiber content. [18]. Crushed radish leaves are applied topically to
reduce inflammation, swelling, and minor wounds [19]. In folk medi-
cine, radish leaf extracts are used to regulate blood sugar levels in dia-
betic patients [20]. The bioactive compounds found in the leaves are
phenolic acids, flavonoids, and other antioxidants, which are known for
their various health benefits [21]. Traditional radish leaf juice recom-
mended for detoxifying the liver and kidneys, aiding in the removal of
toxins and improving bile production [22,23].

3.3. Root

The root of radish is a modified taproot. The taproot is thickened for
nutrient storage, making it a storage organ. It can be cylindrical, conical,
or fusiform, depending on the cultivar. The outer layer different in color
(white, red, or purple), while the inner flesh is typically white. The
upper part of the root, including the hypocotyl, contributes to the
storage structure. It is one of the most widely cultivated root vegetables,
and its primary cultivation goal is to produce large, edible roots that are
crisp, mildly spicy, and nutritious. The process of optimising root growth
involves various agricultural practices to ensure that the roots of the
radish plant grow to their full potential (Fig. 1) [24].

"The salted radish roots feature a distinctive yellow hue", which is
generated during storage. Radish roots alter very much in shape, colour,
and more external characteristics [25]. The become bigger roots and
hypocotyls of radish are taken mostly as a salted vegetable and are also
consumed firm as crushed radish, garnish, and salad [26]. It is a
well-received root vegetable in both tropical and temperate regions.
Muli is a great source of minerals as well as vitamins, particularly
vitamin C [27]. The roots are also useful in urinary complaints and piles
[28].

3.4. Peel

The peel of Raphanus sativus is often discarded; however, it is a rich
source of bioactive compounds that exert beneficial effects on human
health (Fig. 1). Radish peel is rich in dietary fibres, which are very useful
in digestion and promoting regular bowel movements. Peel of radish
also contains secondary metabolites such as phenolics and flavonoids
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beneficial as antioxidants. Antioxidants are highly beneficial in miti-
gating oxidative stress [29]. Additionally, the peel contains glucosino-
lates, which, when metabolised, can offer protective effects against
inflammation and oxidative damage. Some studies suggest that the
radish peel may possess antimicrobial and anti-inflammatory properties,
further enhancing its potential therapeutic applications [30]. With its
high concentration of vitamins, minerals, and phytochemicals, the peel
of R. sativus is beneficial but not utilised [31].

4. Phytoconstituents of Raphanus sativus

R. sativus contains a diverse array of phytoconstituents that elevate
its medicinal efficacy. The root and leaves are rich in bioactive com-
pounds, including glucosinolates, which are sulfur-containing com-
pounds recognized for their possible anti-cancer, anti-inflammatory, and
antioxidant effects [32]. When metabolised, glucosinolates break down
into biologically active metabolites, such as isothiocyanates, further
enhancing the plant’s therapeutic effects. Other notable phytochemicals
in R. sativus, recognised for their potential anti-cancer, anti-in-
flammatory, and antioxidant effects, include flavonoids such as quer-
cetin and kaempferol, as well as phenolics like gallic acid. Additionally,
saponins, alkaloids, and essential oils present in R. sativus contribute to
its antimicrobial and hepatoprotective activities (Table 3). In addition to
its antioxidant and anti-inflammatory properties, the plant contains vital
nutrients, including vitamin C and minerals such as potassium and cal-
cium, which support its therapeutic effects. Dietary fibre further un-
derscores its potential health benefits [18,33]. Collectively, these
phytoconstituents provide R. sativus with a broad spectrum of thera-
peutic properties, making it a valuable candidate for various traditional
and modern medicinal applications [34].

The major bioactive compounds identified in Raphanus sativus and
indicates in which other plant species these compounds have also been
characterized. This comparative table helps contextualize the relevance
and recurrence of these phytoconstituents across the plant kingdom and
supports the broader pharmacological implications discussed (Table 4).
In addition, we have provided structural representations of the key
compounds (see Fig. 2) with annotations of any chiral centres or rele-
vant stereochemistry to enhance clarity and scientific rigour.

4.1. Alkaloids

Radish contains various alkaloid compounds including pyrrolidine,
phenethylamine, N-methylphenethylamine, sinapine and trigonelline
[41,42]. In Raphanus sativus, several alkaloids have been identified,
contributing to its therapeutic potential. Notable alkaloids include
raphanin, which exhibits antibacterial properties [43]. These com-
pounds are believed to play a role in the plant’s defence mechanisms and
may contribute to its traditional use in managing digestive disorders,
inflammation, and microbial infections. The presence of these bioactive

Table 3
Active constituents and their pharmacological effects of R. sativus.
Active Pharmacological activity References
phytoconstituents
Pyrrolidine Antibacterial, Antiviral, antifungal, [35]
Anticancer, anticonvulsant
Lactone Antifungal, Anticancer, Antivirals, [36]
Antibacterial
Tannins Antioxidant, Anticancer, Antimicrobial, [37]
Anti-inflammatory
Stilbenes Antioxidant, Neuroprotective, [38]
cardioprotective, anticancer,
antimicrobial, anti-inflammatory.
Polypeptides Analgesic, Antibacterial, Antitumor, and [39]
Antiviral
Lignans Antioxidant, Oxidative stress, anti- [40]
inflammatory
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alkaloids enhances the plant’s medicinal value and supports its inclusion
in traditional remedies and modern pharmacological studies.

4.2. Glucosinolates and Isothiocyanates

Raphanus sativus is a rich source of bioactive phytochemicals,
particularly glucosinolates and their enzymatic hydrolysis products,
isothiocyanates, which contribute significantly to its medicinal and
nutritional value [4,6]. Glucosinolates are sulfur-containing secondary
metabolites predominantly found in the Brassicaceae family [44]. In
radish, major glucosinolates include glucoraphanin, glucobrassicin,
glucoerucin, and glucoraphasatin [45]. Upon tissue damage, the enzyme
myrosinase catalyzes the hydrolysis of these glucosinolates into iso-
thiocyanates, thiocyanates, and nitriles [46,47]. Among the iso-
thiocyanates derived from radish glucosinolates, sulforaphane,
raphasatin, and erucin are particularly noteworthy [48]. These com-
pounds exhibit a broad spectrum of biological activities including
antioxidant, anticancer, anti-inflammatory, and antimicrobial effects.
Sulforaphane, in particular, has been extensively studied for its che-
mopreventive potential, acting through modulation of phase II detoxi-
fying enzymes and inhibition of histone deacetylase [49]. The
synergistic interaction between glucosinolates and isothiocyanates un-
derlines the therapeutic promise of R. sativus as a functional food and
phytomedicinal agent.

4.3. Phenolic compounds

Phenolic amalgam retain ordinary chemical structure a structure
that includes an aromatic ring, likely in the context of a compound or a
molecule, such as glucosinolates or another class of biologically relevant
compounds. with more hydroxyl group that replaces another atom that
can be divided into respective classes [50,51]. These phenolics include
flavonoids, phenolic acids, and their derivatives, which play a vital role
in plant defense and human health [52]. Among the most prominent
phenolic acids identified in Raphanus sativus are gallic acid, ferulic acid,
caffeic acid, p-coumaric acid, and sinapic acid. These compounds are
primarily present in the root, peel, and leaves of the plant [31]. Flavo-
noids such as quercetin, kaempferol, and rutin are also notable con-
stituents, especially in the peel and leaf extracts [53]. The presence of
these compounds enhances the free radical scavenging activity of radish,
thereby protecting cells from oxidative damage [6]. Additionally, these
phenolics may modulate various biological pathways, including those
involved in inflammation and carcinogenesis, making Raphanus sativus a
valuable dietary component with potential health-promoting effects.

4.4. Flavonoids

The predominant flavonoids identified in Raphanus sativus include
quercetin, kaempferol, rutin, and isovitexin [54]. These compounds are
mainly found in the leaves and roots of the plant and contribute to its
defense mechanism against oxidative stress and microbial invasion.
Quercetin, a well-studied flavonol, exhibits potent antioxidant and
radical scavenging activity, while kaempferol is known for its
anti-inflammatory and anti-cancer effects [55]. Rutin, a glycoside of
quercetin, enhances capillary strength and reduces vascular inflamma-
tion [56]. Additionally, isovitexin, a C-glycosyl flavone, has shown
promising neuroprotective and hepatoprotective actions [57]. The
presence of these flavonoids in Raphanus sativus significantly contributes
to its therapeutic efficacy in traditional and modern medicine, especially
in managing metabolic and inflammatory disorders.

4.5. Pigments
In R. sativus the primary pigments responsible for coloration are

anthocyanins, which are water-soluble flavonoid compounds. These
pigments impart various colors to the radish, ranging from red and
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Table 4

Bioactive compounds of Raphanus sativus and their occurrence in other Plants.
Compound Name Class Also Characterized In Pharmacological Activities References
Sulforaphane Isothiocyanate Brassica oleracea (Broccoli) Anticancer, antioxidant [70-72]
Raphanin Thioether Brassica juncea, Armoracia rusticana Antibacterial, antifungal [73,74]
Indole—3-carbinol Indole derivative Brassica chinensis, Brassica rapa Antitumor, anti-inflammatory [75]
Quercetin Flavonoid Allium cepa, Camellia sinensis Antioxidant, anti-inflammatory [76,77]
Kaempferol Flavonoid Ginkgo biloba, Brassica napus Antioxidant, anticancer [78-80]
Glucoraphanin Glucosinolate Brassica oleracea, Brassica rapa Precursor of sulforaphane, chemopreventive [81,82]

purple to pink hues. Specifically, pelargonidin is the major anthocyanin
found in red-skinned or red-fleshed radishes. Additionally, cyanidin
contributes to the purple coloration in certain radish cultivars. These
anthocyanins are predominantly located in the taproots, leaves, stems,
and flowers of the plant. Beyond their role in pigmentation, anthocya-
nins in radishes have been recognized for their antioxidant properties,
making them beneficial for human health [58].

4.6. Polysaccharides

The components and variations of polysaccharides, which are long
chains of sugar molecules (monosaccharides) linked together. While D-
glucose is the most common monosaccharide found in polysaccharides,
other monosaccharides like D-fructose, D-galactose, L-galactose, D-
mannose, L-arabinose, and D-xylose can also be part of the structure,
depending on the type of polysaccharide. often a few monosaccharides
original the term amino sugars refer to monosaccharides that contain an
amine group (-NHz) in place of a hydroxyl group (-OH) on one of the
sugar carbons. These amino sugars, such as D-glucosamine and D-
galactosamine, play an important role in various polysaccharides,
especially in glycosaminoglycans (GAGs) and glycoproteins, which are
vital for cell structure, signalling, and various biological functions[59].
Polysaccharides are radical category biological molecules. They are
deep connected of carbohydrate molecules, free from agitation of a few
smaller monosaccharides [60]. Polysaccharide is a kind of common a so
many polymer or high polymer, which is gernally free from agitation of
in excess of 10 monosaccharides by virtue of glycosidic, The relationship
in linear or branched chains of polysaccharides plays a crucial role in
determining their structural properties and functional roles in biological
systems with a molecular weight of tens of thousands or even millions
[61].

4.7. Proteoglycan

Radish contains proteoglycans, complex molecules composed of
proteins and glycosaminoglycans, which play various roles in plant
physiology and potential health benefits [62].

4.8. Protein and peptides

Raphanus sativus contains a diverse array of bioactive proteins and
peptides that contribute to its pharmacological properties. Among the
most studied are antimicrobial peptides (AMPs) such as Rs-AFP1 and Rs-
AFP2, which belong to the plant defensin family [63,64]. These small,
cysteine-rich peptides exhibit potent antifungal activity, particularly
against pathogens like Fusarium oxysporum and Botrytis cinerea. Rs-AFPs
are characterized by their conserved disulfide bridges and p-sheet-rich
structures, contributing to their stability and bioactivity.

In addition to AMPs, Raphanus sativus seeds are a rich source of
storage proteins such as napins and cruciferins [65]. Napins are low
molecular weight, water-soluble proteins with potential immunomod-
ulatory and antimicrobial functions. Cruciferins, on the other hand, are
globulin-type storage proteins that contribute to nutritional value and
may have antioxidant activity. Enzymatic proteins like myrosinase are
also prevalent in radish tissues. Myrosinase hydrolyzes glucosinolates

(another major group of phytochemicals in radish) to produce biologi-
cally active compounds such as isothiocyanates, which possess anti-
cancer, antibacterial, and anti-inflammatory properties [66].

4.9. Enzymes

It contains several enzymes and bioactive compounds with notable
pharmacological properties. Myrosinase enzyme catalyzes the hydroly-
sis of glucosinolates into bioactive compounds such as isothiocyanates,
thiocyanates, and nitriles, which are involved in the plant’s defense
mechanisms. In vitro studies have shown that isothiocyanates exhibit
antimicrobial properties, inhibiting the growth of bacteria like Staphy-
lococcus, Pneumococcus, and Escherichia coli. Radish extracts have been
found to inhibit a-amylase and a-glucosidase enzymes in vitro. These
enzymes are required for the degradation of polysaccharides into
glucose in the intestine before absorption, suggesting potential benefits
in managing postprandial blood glucose level [67].

4.10. Gibberellins

The act of implanting a pathogen having characteristics in common,
to cell that lacks or has a reduced ability to produce gibberellins (GAs),
which are a group of plant hormones involved in regulating growth and
development, deviant is gibberellin-deficient due to mutations in the
genes responsible for GA biosynthesis. This means it has a reduced
ability to produce gibberellins, which results in distinct growth char-
acteristics compared to normal rice cultivars. was to organise & perform
a particular activity preceive the isolates potential to invigorating
extension of the revealed cultivar. First, the rice seeds were disinfecting
and immerse in the as a base for soups of the choose seven bacilli germs
microbe organism pathogen set apart (10® cfu/ml), whereas association
a young plant grown from seed The seeds were soaked for 6 h in a
shaking incubator to ensure uniform soaking and possibly facilitate early
metabolic activities within the seeds [68].

4.11. Other constituents

The differential distribution of Raphanus A and Raphanus B in radish
(likely referring to specific secondary metabolites or compounds in the
plant) and their correlation with growth suppression at the lighted side
suggests an interesting interaction between light, metabolism, and
growth patterns in plants [69].

5. Therapeutic potential of Raphanus sativus

Radish is recognised for numerous pharmacological actions. It is
useful due to the presence of bioactive compounds such as glucosino-
lates, flavonoids, phenolic acids, and saponins [21]. Traditionally, it has
been used to aid digestion, promote liver function, and detoxify the
body. The root of R. sativus exhibits anti-inflammatory, antioxidant, and
anti-cancer properties, primarily attributed to its glucosinolates and the
isothiocyanates that are produced when they break down [83]. These
compounds have been shown to inhibit tumour growth, protect against
oxidative stress, and modulate inflammatory pathways. Additionally,
the antimicrobial properties of radish make it beneficial for combating
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bacterial infections, while its diuretic properties help promote urine
production and eliminate excess fluids from the body. The leaves and
seeds of the plant also contribute to its pharmacological potential, with
studies indicating their hepatoprotective, cardioprotective, and blood
sugar-lowering effects. Furthermore, R. sativus has been explored for its
ability to support respiratory health, reduce cholesterol levels, and
improve skin conditions due to its detoxifying and anti-inflammatory
properties. These diverse pharmacological actions make R. sativus a
valuable candidate for both traditional and modern therapeutic appli-
cations (Table 5).

5.1. Anticancer activity

R. sativus has been researched for its anticancer properties due to its
rich phytochemical composition [4]. Radish contains bioactive com-
pounds such as glucosinolates, a type of chemical compound found in
certain plants, isothiocyanates, anthocyanins, and flavonoids, which
exhibit cytotoxic effects on cancer cells [48]. These compounds have
been reported to induce apoptosis (programmed cell death), inhibit
cancer cell proliferation, and modulate main signaling pathways
involved in cancer progression. The hexane extract derived from radish
roots contains various isothiocyanates (ITCs), including 4-(methyl-
thio)-3-butenyl isothiocyanate (MTBITC), erucin (4-(methylthio)-butyl
isothiocyanate), 4-methylpentyl isothiocyanate, 4-pentenyl isothiocya-
nate, and sulforaphene. These compounds were shown to trigger
apoptosis in cancer cell lines, regardless of the presence or absence of
functional p53, indicating that the extract activates cell death pathways
independently of p53 status. The mechanism of apoptosis appears to
involve modulation of Bcl-2 family proteins and the activation of
caspase-3 [84]. Sulforaphane administration enhanced apoptosis by
promoting the expression of TNF-related apoptosis-inducing ligand
(TRAIL) and suppressing the activity of ERK and Akt signaling in the
extrinsic apoptotic pathway [85-87]. Sulforaphane generates free rad-
icals within cancer cells, contributing to the disruption of microtubule
polymerization [85,88] (Fig. 3). In one research Noman et al, analyzed
the leaves and roots of R. sativus grown in Saudi Arabia for total phenol,
flavonoid content, and antioxidant activity, finding higher levels in the
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leaves. Both extracts showed cytotoxic effects against various cancer cell
lines, with leaves demonstrating stronger antiproliferative activity.
High-performance thin-layer chromatography (HPTLC) identified rutin
in the leaves, indicating them as a promising source of bioactive com-
pounds [89]. In another study, Pocasap et al. evaluated the variation in
sulforaphane and sulforaphane content in various periods and portions
of R. sativus for their anticancer effects on HCT116 colon cancer cells.
FTIR-ATR, GC-MS, and HPLC were used for characterization and
quantification, revealing that reproductive parts, particularly
late-bolting stages, had the highest concentrations. The findings suggest
the optimal harvesting stage and plant part for chemopreventive use
based on isothiocyanate concentration [90]. Kim et al, isolated seven
4-methylthio-butanyl derivatives from the methanolic seed extract of
R. sativus using bioassay-guided fractionation. Three new compounds
were identified, along with four known ones, and their chemical struc-
tures were elucidated through NMR and mass spectrometry. The com-
pounds showed significant anti-inflammatory effects and
antiproliferative activity against the HCT-15 human tumour cell line,
with compound 1 demonstrating the strongest anti-inflammatory and
antiproliferative properties [91]. Umamaheswari et al, studied focuses
on the green synthesis of zinc oxide nanoparticles (ZnO NPs) from
R. sativus var. Longipinnatus leaves and evaluates their anticancer ac-
tivity. Characterization techniques confirmed the nanoparticles’ nano-
scale size, crystal structure, and functional groups. The synthesized ZnO
NPs demonstrated enhanced cytotoxicity against A549 cell lines, sug-
gesting their potential as chemopreventive agents in cancer treatment
[92].

5.2. Antioxidant activity

R. sativus has strong antioxidant properties due to the presence of
flavonoids (such as quercetin and kaempferol), phenolic compounds
(like caffeic acid and ferulic acid), and anthocyanins. These compounds
help neutralize free radicals and protect cells from oxidative damage,
which is crucial in preventing chronic diseases such as cancer and car-
diovascular diseases. [93]. Noman et al. examined the antioxidant ac-
tivity of 70 % of white R. sativus leaves and roots by using 2,2-azino bis

Table 5
Therapeutic potential of R. sativus in various diseases.
Pharmacological Active Parts Extraction Model Used Special Outcomes Reference
Activity Phytoconstituents Used Method
Antioxidant, Phenolics, Flavonoids Plant Aqueous Albino rats (In-vivo study) Protective effects against [114]
Nephroprotective Extraction nephrotoxicity, enhanced
antioxidant activity
Anti-inflammatory Glucosinolates, Fresh Direct juice Albino rats (In-vivo study) Significant reduction in [115]
Isothiocyanates juice extraction inflammation markers in acute
and chronic models
Anxiolytic Phenolic compounds Sprouts Aqueous Mice (In-vivo study) Anxiolytic-like effects [116]
Extraction comparable to standard drugs,
modulating CNS activity
Antidiabetic Glucosinolates, Leaves Ethanol and a-glucosidase and a-amylase inhibition Potent inhibition of carbohydrate ~ [9]
Polyphenols Methanol assays metabolizing enzymes,
Extraction suggesting antidiabetic potential
Antihyperglycemic, Polyphenols, Whole HPLC-MS/MS In vitro antioxidant assays Reduction of oxidative stress and [117]
Antioxidant Flavonoids plant Extraction improved glucose metabolism
Antibacterial, Anti- Phenolic acids, Leaves, Kombucha In vitro antioxidant assays Enhanced antibacterial and anti- [118]
inflammatory Isothiocyanates Roots Fermentation DPPH (2,2-diphenyl—1-picrylhydrazyl), inflammatory properties after
ABTS (2,2"-azino-bis(3- fermentation
ethylbenzothiazoline—6-sulfonic acid)
Antiasthmatic Glucosinolates, leaves Aqueous In-vivo asthma model (Mice) Reduced airway inflammation [119]
Sulforaphane Extraction and oxidative stress, modulating
immune responses
Cytotoxic (Anticancer) Isothiocyanates, Roots Ethanolic Human cancer cell lines Induced apoptosis in cancer cells, [120]
Glucosinolates Extraction potential for chemotherapeutic
development
Anti-inflammatory, Carotenoids, Fatty Seeds Oil Extraction In vivo inflammation models Down-regulation of TNF-a, [121]

Anti-angiogenic

acids

arresting inflammation and
angiogenesis




D. Kumar et al.

Pharmacological Research - Natural Products 9 (2025) 100380

'e

[ AhR ] { Nrf2 pathway —]

\_Y_)

Detoxification mechanism

Phase | Phasel I I
enzymes enzymes

4-(methylthio)-
3-butenyl
isothiocyanate

Antioxidant
system

S

Quinone reductase
Heme oxygenase
Thioredoxin reductase

CYP 1A2
CYP 1A1
CYP1B1

L

Detoxification
of carcinogen

Sulforaphane

Glucoraphastin

Generation of ROS

| e
N

Normal cell
recovery

Cancer cell

[‘> Cell death
Sulforaphene

waishs
juepixonuy

Sulforaphane

Extrinsic
pathway

Intrinsic
pathway

<

{ (9seud W/zo) 3phd |10 Jl

Pro-apoptotic protein

(Increase) TRAIL (Increase)
Anti-apoptotic protein ERK and AKT (Decrease)
(Decrease)

L

Apoptosis of cancer 1

cells J

Fig. (3). Mechanism of anticancer action of major bioactive compounds from Raphanus sativus. Glucoraphastin, 4-(methylthio)-3-butenyl isothiocyanate, sulfo-
raphane, sulforaphene, Aryl hydrocarbon Receptor (AhR), alpha serine-threonine protein kinase (Akt), cytochrome P450 (CYP450), extracellular signal-regulated
kinase (ERK), 4TNF-related apoptosis inducing ligand (TRAIL), NF-E2-related factor 2 (Nrf2), reactive oxygen species (ROS),.

3-ethylbenzothiazoline 6 3-ethylbenzothiazoline-6-sulfonic acid (ABTS)
and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods. Results show that
70 % leaves of R. sativus exhibit higher antioxidant activity than roots in
both ABTS and DPPH methods [89].

5.3. Anti-bacterial

Radish has been extensively studied for its antibacterial properties
across various parts of the plant, including roots, leaves, and seeds.
These studies have demonstrated its effectiveness against a range of
bacterial pathogens. Research on root extract indicates that acetone and
hexane extracts from radish roots exhibit significant antibacterial ac-
tivity. These extracts have been effective against both Gram-positive
bacteria, such as Staphylococcus aureus and Bacillus subtilis, and
Gram-negative bacteria, including Escherichia coli and Salmonella typhi-
murium. The presence of isothiocyanates, particularly allyl isothiocya-
nate, phenyl isothiocyanate, and benzyl isothiocyanate, is believed to
contribute to this antibacterial effect. Research on leaf extracts has
shown notable antibacterial activity against both Gram-positive and
Gram-negative bacteria. Phytochemical analyses have identified

compounds such as kaempferol, caffeic acid, and chlorogenic acid in the
leaves, which are known for their antimicrobial properties. Research on
seed extracts has demonstrated that ethanolic extracts from radish seeds
possess antibacterial properties against various pathogens, including
Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Salmonella
typhimurium, and Klebsiella pneumoniae. This activity is primarily
attributed to sulfur-containing compounds present in the seeds. The
antibacterial activity of radish extracts is primarily attributed to the
presence of isothiocyanates and other phytochemicals that can disrupt
bacterial cell membranes, inhibit nutrient uptake, and interfere with
essential cellular processes, ultimately leading to bacterial cell death. In
summary, R. sativus exhibits significant antibacterial activity across its
various parts, making it a potential natural source for developing anti-
bacterial agents [94-96].

5.4. Antifungal activity

R. sativus has been investigated for its antimicrobial properties,
including antifungal activity. Studies indicate that extracts from radish
seeds, roots, and leaves exhibit inhibitory effects against various fungal
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pathogens. The bioactive compounds in radish, such as glucosinolates,
isothiocyanates, and flavonoids, contribute to its antifungal potential.
The findings suggest that R. sativus could serve as a natural antifungal
agent with applications in agriculture, medicine, and food preservation.
Terras et al. studied two unique programs of antifungal proteins isolated
from radish seeds: Rs-AFPs and 2S storage albumins. Rs-AFPs are highly
potent, cysteine-rich proteins with broad antifungal activity, less
affected by cations, and homologous to gamma-thionins. In contrast, 2S
storage albumins inhibit fungi and some bacteria but are strongly
antagonised by cations [97]. In another study Barimani, Gholami, and
Nabili evaluated the antifungal effects of R. sativus and Trachyspermum
ammi extracts on azole-resistant and susceptible Aspergillus fumigatus
isolates from 185 environmental samples across 11 cities in Iran. Anti-
fungal susceptibility testing revealed that 45 isolates exhibited high
MICs to triazole agents, while the extracts demonstrated significant
inhibitory activity, with MICso and MICeo values of 1.95-3.9 mg/ml for
R. sativus and 2.30-4.85 mg/ml for T. ammi. Gas chromatography-mass
spectrometry identified Tramadol (58.37 %), Butanol (23.42 %), and
Benzofuran (18.21 %) as major components in the extracts [98]. In one
research, Aerts et al., evaluated the RsAFP2, an antifungal plant defensin
from R. sativus, which binds to glucosylceramides (GlcCer) in fungal
membranes, inducing membrane permeabilisation and cell death.
However, RsAFP2 does not directly permeabilize GlcCer-containing
vesicles, suggesting an alternative mechanism involving a signalling
cascade. RsAFP2 triggers ROS generation in Candida albicans wild type,
but not in a mutant lacking GlcCer, indicating that ROS production is
important for its antifungal activity, which can be blocked by ascorbic
acid [99].

5.5. Antidiabetic

Diabetes is generally an acute and terrifying metabolic disorder. It is
characterised by a relative or absolute deficiency of insulin, which oc-
curs either due to the body’s inability to effectively utilize the insulin it
produces or because the pancreas fails to produce an adequate amount
of insulin. The hormone does not regulate blood glucose. There are three
kinds of diabetes: Type-I (insulin-reliant), Type-II (non-insulin-reliant)
and gestational diabetes, which have been identified by the Global
Health Organisation (GHO) [100]. The effect of red R. sativus roots (red
radish) may be attributed to the presence of compounds like flavonoids
and anthocyanins [11]. Radish has been investigated for its potential
antidiabetic activities. The water-soluble extract of radish displayed
hypoglycemic properties due to the presence of insulin-like polyphenols
or glucose-inhibiting compounds [101,102]. Radish extracts exhibit
antidiabetic properties through several mechanisms, including (a)
modulation of glucose-regulating hormones, (b) mitigation of oxidative
stress associated with diabetes, and (c) regulation of glucose uptake and
absorption. Radish extracts have demonstrated the ability to upregulate
the production of adiponectin an adipocyte-derived hormone crucial for
regulating lipid and glucose metabolism [103—105]. Elevated adipo-
nectin levels are associated with improved insulin sensitivity and a
reduction in body weight [106]. This hormone orchestrates key meta-
bolic pathways, facilitating glucose uptake and promoting lipid oxida-
tion [106,107]. Additionally, adiponectin influences the expression of
genes implicated in inflammation, cell proliferation, apoptosis, endo-
somal trafficking, and chromatin remodeling [103]. Adiponectin exerts
its effects through interaction with its receptors, ADIPOR1 and ADI-
POR2, as well as activation of peroxisome proliferator-activated recep-
tor gamma (PPARy) [106]. ADIPOR1 primarily regulates genes involved
in inflammatory responses and oxidative stress, while ADIPOR2 acti-
vates APPL1 (adaptor protein, phosphotyrosine interaction, PH domain
and leucine zipper containing 1), which enhances the transcription of
genes crucial for gluconeogenesis and glucose transport [104,105].
PPARyY, on the other hand, plays a key role in maintaining fatty acid
B-oxidation. Activation of these pathways also leads to phosphorylation
of acetyl-CoA carboxylase 2 (ACC2), further promoting fatty acid
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oxidation and improving insulin responsiveness [106,108,109]. More-
over, adiponectin mitigates oxidative stress by upregulating antioxidant
genes such as superoxide dismutase (SOD), thereby reducing reactive
oxygen species (ROS) levels [110]. Collectively, these
adiponectin-mediated mechanisms suggest that radish extract may serve
as a promising natural agent in the management and prevention of
diabetes. Research on root indicates that root juice possesses significant
hypoglycemic potential. A study demonstrated that administration of
radish root juice led to a notable reduction in blood glucose levels,
highlighting its antidiabetic efficacy (Fig. 4). Research on leaves in-
dicates that leaves possess significant hypoglycemic potential. One
investigation found that radish leaves inhibited the breakdown of starch
and demonstrated glucose-binding abilities, suggesting a role in man-
aging postprandial blood glucose levels. Research on seeds has also been
conducted for their antidiabetic effects. Due to the presence of poorly
water-soluble phytoconstituents, researchers have developed nano-
particles from radish seed extracts to enhance the bioavailability of these
compounds. These nanoparticles exhibited antidiabetic properties,
indicating that radish seeds could be a valuable resource for diabetes
management. The antidiabetic effects of radish are attributed to its
antioxidant activity, increased glucose metabolism, and reduced glucose
absorption in the intestine, which contribute to lower blood glucose
levels [111].

5.6. Anti-inflammatory

Inflammation is a complex protective response to harmful stimuli,
including pathogens and toxic substances. While the inflammatory
process plays a critical role in maintaining physiological stability and
initiating tissue repair, an excessive or prolonged response can
contribute to the development of chronic inflammatory diseases such as
colitis, neuroinflammation, asthma, atopic dermatitis, arthritis, and
allergic rhinitis [112]. In one research study, Choi et al, evaluated the
intestinal anti-inflammatory effects of RSL seed water extract (RWE) in
experimental rat models of trinitrobenzenesulphonic acid (TNBS) or
dextran sodium sulfate (DSS) induced colitis. RWE treatment
(100 mg/kg) reduced intestinal inflammation, oxidative damage, and
pro-inflammatory cytokine levels, demonstrating effects similar to those
of mesalazine. The findings suggest that RWE has potential as a thera-
peutic agent for intestinal inflammatory disorders [113]. In another
study, Park and Song evaluated the anti-inflammatory effects of RSL
extract by fractionating it into different solvents and testing it on
LPS-stimulated RAW264.7 cells. The chloroform fraction significantly
inhibited nitric oxide release and reduced the expression of inflamma-
tory markers like inducible nitric oxide synthase and cyclooxygenase-2.
The results suggest that RSL’s anti-inflammatory action involves the
inactivation of NF-kB in macrophages [112].

6. Nanotechnology-based drug delivery systems for R. sativus
extracts

Nanotechnology-based drug delivery systems have revolutionised
the field of natural product pharmacology, allowing for enhanced
bioavailability, controlled release, and targeted delivery of plant-
derived compounds [122]. R. sativus (radish) contains bioactive phyto-
chemicals such as glucosinolates, flavonoids, and anthocyanins with
potential pharmacological effects, including antimicrobial, anticancer,
and antioxidant properties. However, conventional administration
methods are limited in their effectiveness due to poor solubility, sta-
bility, and bioavailability. Nanotechnology offers a solution through
nanoencapsulation, nanoemulsions, and nanocarriers, which improve
the solubility, stability, and therapeutic efficacy of R. sativus extracts.
Several studies have investigated these innovative approaches, yielding
promising results in biomedical applications (Table 6).

In addition to conventional nanoparticles, innovative nanocarrier
systems such as nanoemulsions and transferosomes are increasingly
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employed for the encapsulation and targeted delivery of Raphanus sat-
ivus bioactive constituents. These advanced delivery systems address
several limitations associated with traditional formulations, such as
alcoholic tinctures, which may suffer from volatility, poor solubility of
certain phytoconstituents, or dermal irritation.

Nanoemulsions, comprising oil, surfactant, and water phases, enable
the effective encapsulation of lipophilic compounds, such as essential
oils and isothiocyanates, found in radish seeds. They enhance the solu-
bility, stability, and bioavailability of these active ingredients, making
them ideal for oral and topical applications in functional foods and
cosmeceuticals. As shown in Table 6, nanoemulsions formulated from
radish seed extract may serve as a reference system for the development
of nutraceuticals [123].

Transferosomes are ultradeformable vesicles composed of phospho-
lipids and edge activators (e.g., surfactants), which significantly
enhance dermal penetration. These carriers have been used to deliver
R. sativus sprout extract in sunscreen emulgels, achieving both anti-
tyrosinase and photoprotective effects, thereby offering an advantage
for cosmeceutical formulations [124]. Their high deformability allows
the encapsulated actives to penetrate deeper skin layers compared to
conventional creams or alcohol-based tonics.

In contrast to these modern systems, alcoholic solutions, though easy
to prepare, often result in low dermal retention, irritation on prolonged
use, and evaporation of active components, leading to reduced thera-
peutic effectiveness.

Overall, as highlighted in Table 5, various nanocarrier platforms
including zinc oxide, silver, nickel, and cerium oxide nanoparticles, as
well as nanoemulsions and transferosomes, have been applied to
different parts of R. sativus (leaves, roots, seeds, and sprouts). These
platforms offer enhanced antimicrobial, anticancer, antioxidant, and
cosmetic properties. Importantly, such systems contribute to improved
targeted delivery, sustained release, and reduced toxicity,

outperforming conventional methods in both pharmacokinetic and
pharmacodynamic profiles.

7. Future directions and research prospects

R. sativus, generally known as radish, has a long history of use in
traditional medicine across various cultures, including Traditional Chi-
nese Medicine (TCM), for its purported health benefits such as pro-
moting digestion, detoxification, and anti-inflammatory effects. As
scientific interest in natural products continues to grow, there is an
increasing focus on rigorously evaluating the pharmacological and
therapeutic potential of R. sativus. Future research should aim to identify
and isolate bioactive compounds from and evaluate their mechanisms of
action at different forms of the plant content, such as the root, leaves,
and seeds, the molecular level. Additionally, advancements in tech-
niques like high-throughput screening and microfluidic systems could
aid in uncovering new therapeutic targets, particularly for inflammatory
diseases, cancer, and metabolic disorders. Clinical research’s are needed
to confirm the capability and assurance of Raphanus sativus extracts in
human populations, bridging the gap in the middle of traditional uses
and latest therapeutic applications., Additionally understanding the
synergistic effects of R. sativus with other herbs or pharmaceuticals may
open new avenues for combination therapies. Investigating its role in gut
microbiota modulation, oxidative stress reduction, and immune system
enhancement could also provide insights into its broader health benefits.
Ultimately, integrating modern pharmacology with traditional knowl-
edge will likely unveil the full therapeutic potential of R. sativus, posi-
tioning it as a promising competitor for the development of novel
natural medicines.
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Table 6
Examples of nanocarriers used in R. sativus.
Nanocarriers Part used Pharmacological Activity Special outcomes References
Zinc Oxide Nanoparticles Leaf extract  Antibacterial activity ZnO nanoparticles (ZnONPs) are promising candidates for chemopreventive drugs, [125]
(ZnONPs) warranting further investigation to identify lead compounds with potential cancer
chemotherapeutic properties.
Antimicrobial activity R. sativus leaf extract can be effectively utilized for the synthesis of ZnO [126]
nanoparticles with antimicrobial applications.
Anticancer property Nanoparticles (NPs) have the potential to act as anticancer agents and may emerge  [92]
as promising chemopreventive agents for future cancer treatments.
Roots Antimicrobial activity and Antimicrobial studies revealed that R-ZnO and RC-ZnO nanoparticles exhibited [127]
extract wound healing applications superior antimicrobial activity compared to pure ZnO nanoparticles against
Escherichia fergusonii (MDR) and Escherichia coli strains.
Silver nanoparticles Leaf aqua human colon cancer cell Green RS-AgNPs exhibit higher cytotoxicity towards cancerous cell lines compared ~ [128]
(AgNPs) extract to normal cell lines.
Leaves Antioxidant, antimicrobial and Based on the in vitro assay results, nanoparticle formulations using R. sativus waste [129]
antifungal extracts were examined as antifungal agents for the protection of horticultural crops
against Venturia inaequalis and Podosphaera leucotricha through in vivo assays.
Roots Antimicrobial activities The antimicrobial activities of the AgNPs were assessed against various pathogenic ~ [130]
organisms.
Leaves Antibacterial activity These AgNPs have demonstrated significant toxicity against human pathogenic [131]
bacteria, indicating their potential as effective antibacterial agents.
Copper oxide and zinc Seeds Trans-generational effect The treated F1 seeds exhibited reduced seed weight along with accumulated levels [132]
oxide nanoparticles of Cu and Zn. The toxic interaction between CuO and ZnO had an antagonistic effect
on plant growth.
Seeds e The study demonstrated that ZnO nanoparticles (NPs) are more effective than CuO  [133]
nanoparticles in enhancing growth and mitigating the negative impacts of NaCl
stress in radish plants.
Nickel oxide Roots Antibacterial and antioxidant The NiO NPs calcined at 100°C exhibited higher antibacterial and antioxidant [134]
nanoparticles (NiO NPs) efficacy activity compared to those calcined at higher temperatures.
Cerium oxide Seeds Translocation and localization The treatment of adult plants with CeO2 NPs involved studying the spatial [135]
nanoparticles distribution of intact CeO2 NPs in radish roots using laser ablation ICP-MS (LA-ICP-
MS). This confirmed the ability of the NPs to enter and accumulate in root tissues.
Nano emulsion Seeds R These findings could serve as a reference for designing functional foods [123]
incorporating raddish seed extract (RSE).
Transferosomes Sprouts Antityrosinase activity R-loaded transfersomes blended sunscreen emulgels could be applied as promising ~ [124]
extract formulation with satisfactory activity for tyrosinase melanin and photoprotective

sunscreening effect.

8. Toxicology and safety aspects

R. sativus is generally considered safe for consumption, both in
culinary and medicinal contexts, having a longstanding presence in
traditional medicine. However, like many plants, its safety profile is
influenced by factors such as dosage, method of preparation, and indi-
vidual sensitivities [136]. The roots, leaves, and seeds of R. sativus linn.
contain so many bioactive compounds, including glucosinolates, which
can have beneficial effects but may also pose risks when consumed in
excess. High intake of these compounds, particularly in concentrated
forms, might trigger gastrointestinal disturbances, as well as bloating,
nausea, and diarrhoea, due to their role in disrupting gut bacteria and
causing mild irritation to the digestive system. Additionally, some re-
ports suggest that excessive consumption of radish seeds, which contain
compounds such as alkaloids, may have toxic effects, particularly when
ingested in large quantities. The peel, while rich in antioxidants and
fiber, may also cause digestive upset in sensitive individuals. As with any
medicinal plant, the safety of R. sativus, particularly in therapeutic
doses, should be evaluated, and potential interactions with pharma-
ceuticals or pre-existing conditions should be considered [137]. Further
toxicological studies and clinical studies are necessary to comprehen-
sively analyse its defence profile, especially for long-term or high-dose
use. Generally, moderate consumption of R. sativus as part of a
balanced diet is considered safe for most people.

9. Conclusion

Raphanus sativus, a widely consumed root vegetable, has demon-
strated promising pharmacological and therapeutic attributes owing to
its rich composition of bioactive compounds, including glucosinolates,
flavonoids, phenolic acids, and isothiocyanates. These constituents
exhibit a broad spectrum of biological activities, including antioxidant,
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antimicrobial, hepatoprotective, and cytotoxic effects. Beyond its
traditional use in herbal medicine systems such as TCM and Ayurveda,
modern investigations have highlighted its potential role in disease
prevention and as an adjunctive therapy.

This review emphasizes not only the phytochemical diversity of
R. sativus but also the significant advancements in delivery technologies
that have improved its pharmacokinetic profile. Nanotechnology-based
systems, such as nanoemulsions, transferosomes, and metallic nano-
particles, have demonstrated enhanced solubility, stability, and targeted
delivery of radish-derived compounds, offering novel opportunities in
nutraceutical and therapeutic formulations.

Despite encouraging findings, there remains a need for more rigorous
preclinical and clinical research to validate efficacy, safety, and dosage
parameters, especially in human models. Additionally, standardising
extraction techniques and assessing synergistic actions with existing
drugs could bridge the gap between traditional usage and evidence-
based modern medicine.

In summary, R. sativus represents a valuable bioresource with
multifaceted health benefits. Integrating its ethnopharmacological her-
itage with cutting-edge scientific innovations can pave the way for its
inclusion in future therapeutic strategies, particularly in the manage-
ment of oxidative stress-related, infectious, and metabolic disorders.
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