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ABSTRACT

In this paper an attempt has to be made to describes in investigation. This paper describes an
investigation in which a genetic algorithm is used to simulate an artificial environment in
which various species compete with one another. Each species that exists on this planet is the
product of millennia of natural selection. Competition for finite resources has produced
varied species, many of which exhibit specialized behavior that allows them to survive.
Genetic algorithms acting upon a randomly chosen population, and competing for finite
resources should produce a near—-maximal biomass, with several distinct species exploiting
different levels of the bio system. Utilizing reproduction, crossover, mutation and inching
operators, the coding scheme could preserve diversity in predator/prey populations and mass
while maximizing biomass and sensory performance within the population, particularly in a
static environment.

Keywords: Mathematical Modeling, Differential Equations, Genetics Algorithms, Avrtificial
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1. INTRODUCTION

Darwin’s theory of evolution concludes that natural selection is the key factor in the origin of
species. Within species, an individual, that reproduces passes on its genetic characteristics.
Individuals that possess ‘favorable’ traits are more likely to survive, hence future generations
increasingly exhibit ‘favorable’ traits. Given time, a population’s characteristics can diverge
significantly from their original makeup. Examining the machinery of natural selection can
lead to keener appreciation of complex interactions that shape life. Because genetic
algorithms are based from the mechanisms of reproduction, they provide a clean analogy to
how real populations can evolve over successive generations. Field observations yield
glimpses of natural selection’s capacity to produce populations that fully exploit their
environment. In the real world, this proceed takes millennia. A simulated ecosystem, with a
diverse initial population, offers a means to view the effects of evolution over hundreds or
thousands of generations. The recombination of individuals via a genetic algorithm provide
an elegant means of rewarding variations that maximize their environment. This chapter will
examine a simulated ecosystem of herbivores and carnivores. Each individual will have
several characteristics that shall determine the relative success or failure of each organism
within the environment. The GA operators of reproduction, crossover, mutation, and niching
will operate on a multi parameter coding. Organisms that can successfully adapt to their
environment will be favored within the reproductive pool. ‘Winning’ populations will have
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the greatest increase in mass, with the population existing near the ideal carrying capacity of
the environment.

About the Work

There have been numerous works published on simulated organisms and ecosystems.
Mechanisms of cell chemistry were examined by Rosenberg [18], which simulated enzyme
reactions using genetic algorithm like operators. The Avida simulated ecosystem shows
support for the punctuated equilibrium view of evolution, as opposed to a more Darwinian
gradual model of evolution given by Adami, C.T., Brown M & Haggerty, J. 2].An artificial
life program called Tierra is used to model both small and large scale ecosystems. Tierra
utilizes genetic algorithms to simulate evolutionary change by Ray. T. [19] the tierra system
creates a diverge population of organisms, but does not optimize resources by the population
as a whole. To examine this problem, it is useful to look at models of population interaction.
Two primary engines of ecological change are predation and competition. Ten components of
functional response to prey and predation given by Kitching, R. L. [14] are:

1. The role of successful search
2. Time of exposure
3. Handling time (time taken to eat)
4. Hunger

5. Learning by predator
6. Inhibitions of prey
7. Exploitation

8. Interference between predators
9. Social facilitation

10. Avoidance learning by prey

Each factor has sub—factors. For instance successful search involves sensory facility, reaction
distance, speed to predator speed of them and capture success. Relationships are drawn
between density of predators density of resources, probability of attack, time spent in attack,
expected gain and number of attacks to derive a success ratio of predation. Smith [21 ] draws
the conclusion that species that spend most of their time searching for food that takes little
effect to capture, will be generalists (e.g. hyenas), while species that have abundandent prey
that takes much effort to capture will be specialists (e.g. cheetahs). Specialization leads to
speciation. Sub—populations which converge at multiple along the spectrum of the initial
population will eventually stop sharing genetic information with other sub—populations.

Problem Statement

The simulated ecosystem will have three components — an environment, a randomly chosen
initial population of herbivores and carnivores with varied characteristics, and a set of rules
governing the success or failure of organisms within the ecosystem. The environment has two
component values carrying capacity and flora color. Carrying capacity refers to the kilograms
of vegetative matter available for consumption by herbivores and for purposes of the
simulation is the product of random fluctuations of rainfall and temperature. Flora color
refers to the predominant shade of the vegetation, and is expressed in terms of red, green and
blue primaries that allow for colors from black to white. Carrying capacity or flora color may
be varied during the course of the simulation.
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The population will consist of randomly chosen individuals with the following coding
scheme:

Food Source — 0 (Herbivore), 1(Carnivore) 1 byte

Ideal Body Weight of adult-5 to 500 kilograms 5 bytes
Color-Red, Green and Blue values from 0 to 256 6 bytes
Number of Legs—2 or 4 legs 1 byte

Vision—Ranging from 0(poor) to 7(great) 3 bytes
Hearing—Ranging from O(poor) to 7(great) 3 bytes
Brain size-Ranging from 0(minimal) to 3(Human like) 5 bytes

Total: 24 bytes

Individuals are allowed to mate freely among all members of their respective herbivore or
carnivore population, subject to the constraints of the fitness evaluation algorithm.

The fitness algorithm measures the competitiveness of an individual measured against his
peers. In predator / prey systems prey animals in the absence of predators will show a
proportional growth rate. Predators introduced into a prey—rich environment will show a high
growth rate and will slow the prey growth rate. An overabundance of predators will lead to
declining numbers of prey, which will, in turn, reduce the number of predators. Lotka—
Volterra’s equations is the basic growth relationship between number of herbivores (H) and
carnivores(C).

an _ aH —bHC
dt

dc _ —cC+dHC
dT

Where HC is the success rate of predation, and a, b, ¢, d are proportionality constants. HC, as
defined by Kitching, is a function of several parameters such as detection success, learning by
prey and predator and hunger. Therefore. Our fitness algorithm must take into account the
factors that lead to the success of predation. Four different functions are used to determine
individual success.

1) Herbivore feeding requirements — Herbivores require an amount of food proportional

to their mass, m®” Food-rich environments favor larger animals, while food—poor
environments will favor smaller animals. Accordingly, the success rate of foraging is:

f =(%j*(b*m°'75)

K = the carrying capacity of the environment
Eh = energy requirement of all herbivores

b = proportional constant

m = the mass of the individual

This function determines the ability of the individual herbivore to successfully forage for
food. Animals that are well fed are less likely to be caught by predators.

2 Carnivore feeding requirements — Carnivores also require food proportional to their
mass, m®'°. Because they can convert 10% of herbivore mass into energy, their success rate
for foraging is :
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f= (I\l/l—;]j/ Ec*(d *m°'75)

Mh = Mass of herbivores
Ec = Energy requirements of all carnivores
d is a proportional constant

Similar to herbivores, this function also shows the success that a well fed predator is likely to
have, vis—a—vis, his starving brethren.

3) Detection success ratio — The ability of an animal to make or escape detection
depends upon their sight (s), hearing (h) and camouflage (c) compared to their opponents.

Herbivore = x(s=S)+ y(%) +12C

Carnivore =i (ij + ] (Dj +kc
S h

S,H are mean population values for sight and hearing

i, J, k, X. y. z are proportional constants

These factors play into the role of successful search and time of exposure. Again, both
equations show how an individual must do better not only in absolute terms, but in terms of
the competition.

4) Intelligence success ratio — The intelligence of an individual relative to their
opponents. Highly intelligent bipedal organisms are given additional credit for tool-use
B is average brain size of population

capability.
. (b
i=|=|(gc
(Bj(g )
g is a proportionality constant

c is 1 for two legged animals, O for four legged animals.

b is brain size of individual

Intelligence is a grab—bag of all of the individual’s various abilities to out—wit the opponent.
The sum of the criteria produces the fitness value for the organism. The fitness value reflects
the innate ability of an individual to survive the effects of environment and predation. For
herbivores, this means the ability to avoid predators while successfully competing for limited
forage resources. Carnivore fitness is measured by the ability to catch the prey and fend off
fellow carnivores. Once determined, a stochastic remainder selection utilizes the fitness
values to reproduce and crossover the fittest individuals. A mutation operator randomly
modifies alleles during crossover. The population size will be determined each generation.
First, the carrying capacity of the environment is determined for each round simulating the
random effects of sunshine and rainfall. This value, taken in conjunction with the total mass
of herbivores from the prior round, will determine the current round’s population size.
Reproduction and crossover will fill all of the available slots in the population according to
the dictates of the fitness function for herbivores and carnivores. Because the amount of food
available to sustain the population is variable particularly for carnivores wild swings in food
supply could wipe out a particular food source. A photo types speciation operator smoothes
fitness functions based upon food source mass Animals with different food sources are
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considered dissimilar. Mass is apportioned with a linear smoothing. This accords well with
common sense, since mating individuals that range in size from 5 to 500 kilograms which
might be inclined to eat the mate are unlikely at best. The expectation is that species should
form based upon food source and mass. Within each species, there should be improvement in
the quality of its individuals, with optimizations of prey and predator near the carrying
capacity of the environment.

2. RESULTS
The following parameters were used in all tests:
Initial Population size 25
Generations 100
Prob. of Crossover 0.6
Prob. of Mutation 0.001

Two series of tests were conducted. In the first test, the carrying capacity remained constant,
which led to a static population size. In the second test, the carrying capacity could vary as
much as 66% from one generation to another, with the population size varying as well. For
the first test, the carrying capacity remained constant at 1500 kg, and the population size was
25. For all individuals, the allele values were randomly selected. Figure 5.1 tracks the
absolute variance between ideal total mass and actual total mass of herbivore and carnivores
over 100 generations. Over succeeding generations, the population converged to
approximately 1% variance, while allowing for crossbreeding of herbivores and carnivores.
The average fitness value of all generations can be seen in Fig. 5.2. A 100% improvement in
total fitness occurred over 100 generations due to maximizations of values for sight, hearing,
color and brain size. The speciation algorithm helped to maintain a relatively static number of
carnivores and herbivores, with the quantity of either food type fluctuating between 8 and 17
for most of the simulation. At 100 generations, the range of individual’s mass still ran from
160 to 420 kg. The average mass had gone from 260 kg initially to 320 kg at the end,
reflecting the higher mass requirements of the herbivore population. Carnivores, which
depended on herbivores for their food, tended to remain at a lower weight. The average value
for vision went from 3.7 to 7. The average value for hearing went from 2.7 to 6.7. Brain size
went from 13.4 to 29.2. Color went from an even distribution to varying shades of green. The
number of legs per individual went from an even distribution to 90% 2-legged, reflecting
greater tool use. The second series of tests examined various carrying capacities and
population sizes. The carrying capacity was allowed to range over 1000 — 1500 kg for each
generation. The population size was incremented or decremented in proportion to the
carrying capacity. Again allele values were selected randomly. Figure 5.3 tracks the absolute
variance between ideal total mass and actual total mass of herbivore and carnivores over 100
generations. Over succeeding generations the variation did evidence some smoothing but
remained overall at approximately the 10% level. The average fitness value of all generations
can be seen in fig. 5.4. A 350% improvement in total fitness occurred over 100 generations
due to near maximizations of values for sight, hearing, color and brain size. The speciation
algorithm helped to maintain the relative proportion of carnivores and herbivores, although
variances were higher than in the static algorithm. Because the food requirements had a much
greater range, the mass of individuals also evidenced a greater range, from 20 to 420 kg. The
average mass, which started at 260 kg. Finished at 275 kg. The distribution contained
substantial accumulation at either extreme. The values for sight, hearing, brain size and color
mimicked the results of the static run, showing good optimization performance.
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Fig. 5.1 Actual Variance from Ideal Total Mass for Static Environment

Fig. 5.2 Average Fitness Value for Static Environment
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Fig. 5.3 Actual Variance from Ideal total Mass for Varying Environment
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Fia. 5.4 Averaae Fitness Value for Static Environment
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3. CONCLUSION

The genetic algorithm was able to optimize the static environment’s biomass much better
than in the dynamic environment. Because herbivores had a constant amount of food to draw
from, the optimization routine narrowed the mass range of the population considerably. This
would indicate that less speciation took place in the static environment. The relatively poor
optimization of biomass in the dynamic environment could be expected, because of the
additional uncertainty introduced into the herbivore food chain. The algorithm did show
robustness by quickly recovering from swings in the food supply, due to the wide range of
body mass preserved by the speciation algorithm. This evidence would seem to accord well
with observations that changing environmental conditions aggravate the swings of the
predator—prey cycle. Both environments performed well in optimizing attributes unconcerned
with food requirements. The values for vision, hearing and brain size all showed
advancement from average initial values to near optimal values. Genetic algorithms can be a
useful method for determining optimal biomasses within a static, and to a lesser extent
dynamic, environment. The use of tools such as speciation more closely mimic natural
processes, and preserve the diversity necessary for successful response to dynamic

environmental changes. At the same time, a GA is able to optimize attributes that relate to
an individual’s fitness.

4. REFERENCES

A connectionist algorithm for genetic search
Proceedings of an International Conference on

1 Ackley, D.H. Genetic Algorithms and Their Applications 121
135, (1985).
. Abundance distributions in artificial life and
2 Adami, C.T., Brown M stochastic models; “Age and Area” revisited,

& Haggerty, J. Proceedings of ECAL 95.(1995)

Genetic operators for high—level knowledge
representations. Genetic Algorithms and their
applications: Proceedings of the Second
International Conference on Genetic Algorithms,
69-76, (1987).

Antonisse, H. J., &
Keller, K.S.

the simulation of genetics and evolution. paper
presented at A Conference on Evolutionary Theory
4 Axelrod,s R. : in Biology and Economics, University of
Bielefeld, Federal Republic of Germany, (1985,
November).

Adaptive selection methods for genetic algorithms.
Proceedings of an International Conference on
Genetic Algorithms and Their Applications, 101
111,(1985).

5 Baker, J. E.

Reducing bias and inefficiency in the selection
algorithm Genetic algorithms and their
6 Baker, J.E. : applications Proceedings of the Second
International Conference on Genetic Algorithms,
14-21,(1987).

2197




TELEMATIQUE
ISSN: 1856-4194

Volume 24 Issue 1, 2025
2190- 2199

Intelligent behavior as an adaptation to the task
environment (Doctoral dissertation, Technical
Report No. 243. Ann Arbor: University of

! Booker, L.B. Michigan. Logic of Computers Group).
Dissertations Abstracts International, 43(2), 469B.
(University Microfilms No. 8214966), (1982).
Biological motivated automation theory and
Burks, A. W. Zeigler, automaton motivated biological research.
8 B.P. Laing, RA. & Proceedings of the 1974 Conference on
Holland, J.H. Biologically Motivated Automata Theory 1—
12,(1974).
Darwinian evolution as a paradigm for Al
9 Fedanzo, A. J. research. SIGART News letter, 97, 22-23,
(19864a).
The genetic theory of natural selection (rev. ed.)
New York: Dover. Fitzpatrick, J.M. Grefenstette,
10 Fisher, R. A. J.J. & Van Gucht, D. (1984). Image registration by
genetic search Proceedings of IEEE Southeast
Conference, 460464, (1958).
Beagle—A Darwinian approach to pattern
1 Forsyth, R. recognition.Kybernetes 10(3), 159-166, (1981).
Incorporating problem specific knowledge into
genetic algorithms. In L. Davis (Ed.). Genetic
12 Grefenstette, J.J. algorithms and simulated annealing (pp. 42-60).
London: Pitman, (1987b).
Adaptation. Progress in Theoretical Biological, 4,
13 Holland, J.H. 263293, (19764).
. Systems ecology — An introduction to ecological
14 Kitching, R. L. modeling. University of Queensland Press, (1983).
Evolutionary pattern recognition system
15 Klopf. A. H. (Technlical Repprt) Chi_cago:_ University of Illinois,
nformation Engineering Department,
Bioengineering Section, (1965).
Evolution and gradualness. BioSystems, 14, 211—
16 Rada, R. 218, (1981a)
Evolution strategic [Evolution Strategy]. Stuttgart:
17 Rechenberg, I. Frommann Holzboog, ((1973).
Simulation of genetic populations with
18 Rosenberg, R. biochemical properties. New York: McGraw Hill.
(1967)
19 Ray, T Artifici_al Life. ATR Human quormation
v Processing Research Laboratories, (1995).
Simulation of genetic populations with
20 Rosenberg, R. S. biochemical properties I. The model Mathematical
Biosciences, 7, 223-257, (1970a).
. Models in ecology. Cambridge University Press,
21 Smith, M. Cambridge, (1974).
99 Sampson, J.R. Biological information processing, New York:

John Wiley, (1984).

2198




TELEMATIQUE
ISSN: 1856-4194

Volume 24 Issue 1, 2025
2190- 2199

23

Schaffer, J.D., &
Morishima. A.

An adaptive crossover distribution mechanism for
genetic algorithms. Genetic algorithms and their
applications. Proceedings of the Second
International Conference on Genetic Algorithms,
36-40, (1987).

24

Takshashi, Y. Rabins,

M. J., & Auslander, D.

M.

Control and dynamic systems. Reading, M.A.:
Addision—Wesley, (1970).

25

Wilson, S.W.

Knowledge growth in an artificial animal.
Proceedings of an International Conference on
Genetic Algorithms and Their Applications, 16—
23, (1985h).

26

Wilson, S.W.

Knowledge groiwth in an artificial animal.
Proceedings of the 41" Yale Workshop on
Applications of Adaptive Systems Theory, 98—
104, (1985c).

27

Wilson, S. W.

Knowledge growth in an artificla animal. In K. S.
Narendra (Ed.), Adaptive and learning systems:
Theory and applications (pp. 255-264). New
York: Plenum Press, (1986d).

28

Wilson, S. W.

The genetic algorithm and biological development.
Genetic algorithms and their applications:
Proceedings of the Second International
Conference on Genetic Algorithms, 247-251
(1987h).

29

Wilson, S. W.

Quasi—Drawinian learning in a classifier system.
Proceedings of the Fourth International Workshop
on Machine Learning, 59-65, (1987¢).

30

Zhou, H.

Classifier systems with long term memory,
proceeding of an International Conference on
Genetic Algorithms and their applications (178—
182), (1985).

2199




