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Drosophila melanogaster third-instar larvae were exposed to AlCls in the diet for 24 h. Dose-dependent reductions
in pupation and adult emergence were observed, Biochemical analyses revealed significantly elevated oxidative
stress markers: increased lipid peroxidation and protein oxidation and depletion of reduced glutathione and
antioxidant enzymes such as superoxide dismutase, catalase, and glutathione transferase. At higher concentra-
tions, larvae also showed increased p-galactosidase activity and ONPG hydrolysis, suggesting lysosomal

dysfunction and senescence-like responses.

1. Introduction

Metals, many of which are vital for biological processes, occur
naturally in the Earth’s crust [1]. Aluminum (Al), the third most abun-
dant element, has broad industrial applications, including in the phar-
maceutical, chemical, construction, and food processing industries [2].
Under natural conditions, Al has low bioavailability; however, human
activities have significantly increased its mobilization, turning it into a
pervasive environmental toxicant [3]. Al is present in the human diet,
both as a natural food component and as an additive in processed
products. Processed cheese, bakery products, cereals, soft drinks, coffee,
rice, biscuits, and dairy substitutes often contain Al additives [4].
Compounds such as sodium aluminum sulfate, sodium aluminum
phosphate, and sodium aluminosilicate serve as stabilizers in food
manufacturing. According to the World Health Organization (WHO), the
tolerable daily intake is 1 mg Al per kg body weight (WHO, 2023).
Nevertheless, current levels of exposure may exceed this limit. Al
exposure arises from multiple sources, including diet, food additives,
environment, industry effluents, and occupational settings [5-6].
Certain crops, including rice, potatoes, spinach, herbs, and spices,
accumulate Al at higher levels [7-8]. Al concentration in fruits and
vegetables is influenced by factors such as soil acidity, irrigation water

quality, and plant type [9].

The extent of Al absorption depends strongly on the route of expo-
sure, with ingestion of food and water being the primary source of
systemic uptake. Gastrointestinal absorption has been documented in
several invertebrate models, including Drosophila [10-11], the land snail
Helix aspersa [12-13], the crayfish Pacifastacus leniusculus [14], the
nematode Caenorhabditis elegans [15], and the earthworm Eisenia andrei
[16]. Al toxicity arises through several mechanisms, including compe-
tition with essential metals, alteration of protein structures [17], and
induction of oxidative stress [18]. Recent work in Drosophila and other
model systems shows that AICls exposure causes oxidative stress and
developmental and neurobehavioral deficits. These findings underscore
the toxicity of Al and the value of Drosophila for mechanistic and miti-
gation studies [19-21].

Drosophila melanogaster is a useful model organism in toxicology
studies [22-24]. Its suitability arises from the ease with which com-
pounds can be incorporated into the diet of larvae or adults, enabling
investigation of effects on development, morphology, and physiology
and making Drosophila a practical system for assessing metal toxicity
[25]. The fly’s short life-cycle allows researchers to study developmental
and adult-stage toxicity within a short time-frame. Drosophila shares
significant genetic similarity with humans, with approximately 75 % of
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human disease-related genes having orthologs in the fly genome [26].
This conservation enhances the relevance of findings to human health.

We have investigated the effects of AlCls on third-instar larvae of
transgenic Drosophila melanogaster (hsp70-lacZ) Bg®.

2. Materials and methods
2.1. Fly strain and treatment

Drosophila melanogaster (hsp70-lacZ) Bg® transgenic strain, used in
the present study, is genetically modified to produce bacterial $-galac-
tosidase along with Hsp70 in response to stress [27]. AlCl3 was pur-
chased from SRL (India) and mixed in the diet at final concentrations of
20, 40, 60, and 80 uM. The concentrations of AlCls were incorporated
during the preparation of the diet. While the diet remained in a liquid
state, an AlCls stock solution was prepared and added in appropriate
amounts to achieve final concentrations of 20, 40, 60, and 80 uM. After
thorough mixing to ensure uniform distribution, the diet was allowed to
solidify.

The LCso value for AlCls, determined by exposing third-instar larvae
to a range of AICls concentrations, was approximately 400 uM. The
highest dose used in the present study was less than one-fourth of this
LCso value.

2.2. O-nitrophenyl-f-D-galactopyranoside (ONPG) assay

Hsp70 expression serves as a valuable indicator of cytotoxicity [28].
The method of Nazir et al. [29] was used. Larvae were placed in
Eppendorf tubes (30 larvae per tube; five replicates per group) and
rinsed with phosphate buffer. They were permeabilized with acetone
and incubated in O- Nitrophenol beta galactopyraniside (ONPG) buffer
consisting of MgSOy, NasHPOy,, NasH5POy, ONPG,
beta-mercaptoethanol and KClI 600 pl.

The reaction was stopped by adding Na,CO3, (1 M) 300 pl.

The reaction was quantified by measuring absorbance at 420 nm.

2.3. In situ histochemical f-galactosidase activity

Ten larvae per treatment group were dissected in Pole’s salt solution
(PSS) according to the method of Chowdhuri et al. [28], with each group
having five replicates. The tissue explants tissue samples were incubated
overnight in X-gal staining solution. The samples were fixed in 2.5 %
glutaraldehyde solution and subsequently washed with sodium phos-
phate buffer and observed under the microscope.

2.4. Trypan blue exclusion test

Tissue damage in the larvae was evaluated by the Trypan blue
exclusion assay [30]. The explants of ten larvae per treatment (five
replicates per group) were isolated and rinsed in phosphate-buffered
saline (PBS). The larvae were stained with Trypan blue for 30 min,
thoroughly washed in PBS, and assessed for dark blue staining. Scoring
was performed using a composite index for each larva: no color = 0; any
blue color = 1; dark blue staining = 2; large patches of dark staining = 3;
and complete staining of most cells = 4 [31].

2.5. Comet assay

The comet assay was performed following the method of Mukho-
padhyay et al. [32]. Base slides were prepared by heating 1 %
normal-melting agarose (NMA), coating one-third of frosted slides, and
allowing them to solidify at room temperature. Midguts were isolated
from 20 larvae per treatment group, with three biological replicates per
group, and collected in PBS, 50 pl. After removing the PBS, collagenase
(0.5 mg/ml in PBS, pH 7.4, 300 pl) was added, and the samples were
incubated before slide preparation. For embedding, 75 pl of the cell
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suspension was mixed with 1.5 % low-melting-point agarose (LMPA),
80 ul, applied onto the pre-coated slides, covered with a coverslip for
10 min, and then the coverslip was removed. For electrophoresis, slides
were placed in the chamber and covered with a chilled alkaline solution
(1 mM NazEDTA and 300 mM NaOH, pH > 13) for a 10-min. unwinding
period. Electrophoresis was then performed for 15 min at 0.7 V/cm and
300 mA, at 4 °C. Following electrophoresis, slides were rinsed three
times with neutralizing buffer (0.4 M Tris) and stained in the dark for
10 min with ethidium bromide (20 ng/ml; 75 ul per slide). The slides
were subsequently rinsed with chilled distilled water and covered with
coverslips. Cells were analyzed under a fluorescence microscope
(Optika, Italy). Using Comet Score 1.5 software, 25 cells per slide were
randomly selected, and the mean tail length (in arbitrary units) was
calculated to evaluate DNA damage.

2.6. Preparation of homogenate for biochemical assays

The larvae (100 larvae/treatment; five replicates/group) and control
third instar larvae fed only on diet were homogenized in cold homoge-
nizing buffer (0.1 M phosphate buffer containing 0.15 M KCl; pH 7.4,
1 ml). The supernatant obtained after centrifugation at 9000 x g was
used for determination of glutathione (GSH) content, glutathione
transferase (GST) activity, protein carbonyl content (PCC), and TBARS
levels, using a spectrophotometer (Model: UV-1800 Shimadzu UV
Spectrophotometer) for absorbance measurements.

2.6.1. Glutathione (GSH) content

Glutathione (GSH) content was estimated calorimetrically using
Ellman’s reagent according to the procedure of Jollow et al. [33]. The
supernatant was precipitated with 4 % sulphosalicyclic acid in the ratio
of 1:1. The samples were kept at 4 °C for 1 h and then subjected to
centrifugation at 4200 rpm for 10 min. at 4 °C. The assay mixture
consisted of 0.1 M phosphate buffer, 550 pl; supernatant, 100 ul; and 5,
5-dithio-bis-(2-nitrobenzoic acid) (DTNB) 100 pl (0.01 M). Absorbance
was read at 412 nm and the results were expressed as micromol GSH/g
tissue.

2.6.2. Glutathione transferase (GST) activity

Glutathione transferase (GST) activity was determined using the
method of Habig et al. [34]. The reaction mixture consisted of 0.1 M
phosphate buffer, 500 pl; 10 mM 1-chloro-2,4-dinitrobenzene (CDNB),
150 pl; 10 mM reduced glutathione, 200 pl; and supernatant, 50 pl.
Absorbance was measured at 340 nm and enzyme activity was expressed
as micromole CDNB conjugate/min/mg protein.

2.6.3. TBARS assay

TBARS were measured according to the method of Ohkawa et al
[35]. The reaction mixture consisted of 10 mM tert-butyl-hydrox-
ytoluene (BHT), 5 pl; 0.67 % thiobarbituric acid, 200 ul; 1 % phosphoric
acid, 600 ul; distilled water, 105 ul; and supernatant, 90 pl. The resulting
mixture was incubated at 90 °C for 45 min and absorbance was
measured at 535 nm. Results were expressed as micromole TBARS for-
med/h/g tissue.

2.6.4. Protein carbonyl (PCC) content

Protein carbonyl content was estimated according to the protocol of
Hawkins et al. [36]. Homogenate was diluted to a protein concentration
~1 mg/ml. A sample of ~250 pl of each diluted homogenate was taken
in an Eppendorf centrifuge tube. 2,4-Dinitrophenylhydrazine, 10 mM, in
2.5 M HCl; 250 pl; was added. The sample was vortexed and kept in the
dark for 20 min. trichloroacetic acid (TCA; 50 % (w/v), ~ 125 pl, was
added, mixed thoroughly and incubated for 15 min at —20 °C. The tubes
were then centrifuged at 4 °C; 10 min; 9000 rpm. The supernatant was
discarded and the pellet was washed twice with ice cold ethanol: ethyl
acetate (1:1). Finally, the pellets were re-dissolved in 6 M guanidine HCI,
1 ml, and absorbance was read at 370 nm.
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2.6.5. Spectrophotometric assay for caspase-9 (Dronc) and caspase-3
(Drice) activities

The assay was performed according to the manufacturer’s protocol
with some modification (Bio-Vision, Milpitas, CA). The assay was based
on spectrophotometric detection of the chromophore p-nitroanilide
(pNA) obtained after specific action of caspase-3 and caspase-9 on tet-
rapeptide substrates, DEVD-pNA and LEHD-pNA, respectively. The
assay mixture consisted of cell suspension, 50 pl, and chilled cell lysis
buffer, incubated on ice for 10 min. After incubation, 2X reaction buffer
(containing 10 mM DTT), 50 pl, with 200 uM substrate (DEVD-pNA for
Drice, and IETD-pNA for Dronc) was added and incubated at 37 °C for
1.5 h. The reaction was quantified at 405 nm.

2.6.6. Superoxide dismutase activity

The method of Marklund and Marklund [37] was used. Reaction
mixtures consisted of sample, 17 pl, and 0.1 M phosphate buffer, 950 pl.
The reaction was initiated by adding pyrogallol (4.5 mM). Absorbance at
420 nm was recorded every 30 s for 3 min and results were expressed as
units/mg protein.

2.6.7. Catalase activity

Activity was estimated using the method of Beers and Sizer [38].
Homogenate (~50 pl) was mixed with 0.1 mol/l phosphate buffer,
438 pl, and 0.5 mol/1 HyO3, 250 pl was added and absorbance was read
at 240 nm. Activity was expressed as pmol of HoO, consumed/min/mg
protein.

2.7. Effect on pupation and emergence of flies

Fifty first-instar larvae were introduced in the vials containing the
desired concentration of AlCl3. The numbers of pupae followed by the
numbers of emerged flies were recorded in the control and treated
groups for 20 days. Three sets of each treatment were employed in the
study. From the fourth day, numbers of larvae pupate followed by
number of emerging flies were recorded separately. Data was expressed
as the mean of three replicates (50 larvae/replicate) [39].

2.8. Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA),
followed by Tukey’s post hoc test, by using GraphPad Prism software
[version 5.0]. For pupation and emergence long run test was used for the
analysis. Significance level was set as p < 0.05.

3. Results

Dose-dependent increases, significant relative to the controls at all
AlCls doses tested, were observed in the following indicators of toxicity:
GST activity (Fig. 4b); caspase-3 activity (Fig. 4d); SOD activity (Fig. 4f).
For the following indicators of toxicity, increases, significant relative to
the controls, were observed at 40 uM AlCls doses and higher, although
not at the lowest (20 uM dose: p-galactosidase activity (Fig. 1); X-gal
staining (Fig. S1); tissue damage (Fig. S2 and Fig.)2); DNA damage
(midgut cells of third-instar larvae, Fig. 3a and b; Fig. 4a); PCC (Fig. 4c;
caspase-9 activity; catalase activity (Fig. 4g); TBARS (Fig. 4h).

Results for the rate of pupation and emergence of flies are shown
(Fig. S3a and b). Pupation began on the fifth day in both the exposed and
control groups. A dose-dependent delay in the rate of pupation was
observed in larvae exposed to doses > 20 uM. Emergence began from
day 12 onward in both exposed and control groups. A dose-dependent
and significant reduction in emergence rate was observed in larvae
exposed to dose > 20 pM.

4. Discussion

We have confirmed the toxicity of AlCl3 in third-instar larvae of
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Fig. 1. p-galactosidase activity measured in the third instar larvae of transgenic
Drosophila melanogaster (hsp70-lacZ) Bg® exposed to various doses of Aluminum
chloride (AICl3) for 24 hrs of duration. *significant at p < 0.05 compared to
control [A-Aluminum chloride; A1-20 uM; A2-40 uM; A3-60 uM; A4-80 uM].
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Fig. 2. Quantification of the tissue damage observed in the third instar larvae
of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 exposed to various doses
of Aluminum chloride (AICl3) for 24 hrs of duration. ®significant at p < 0.05
compared to control. [A-Aluminum chloride; A1-20 uM; A2-40 uM; A3-60 uM;
A4-80 pM].

transgenic Drosophila melanogaster (hsp-70 lac Z) Bg®. Al (Al) is one of the
most widespread metals in the Earth’s crust but it has no known
essential role in metabolism [3]. Al exposure has been linked to the onset
and progression of neurological disorders, including Alzheimer’s dis-
ease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS)
[40-42]. AlCl;3 has been reported to increase oxidative stress and reduce
antioxidant defense mechanisms [43-44]. Here, we found a reduction in
GSH content and increases in GST, TBARS, PCC, CAT and SOD activities.
Delay in pupation and emergence was observed. Oxidative stress arises
when generation of reactive oxygen species (ROS) exceeds capacity to
counteract their harmful effects. Such an imbalance can result in
extensive cellular injury, including membrane disruption, protein al-
terations, DNA damage, and eventually cell death [45].

We observed a significant increase in p-galactosidase activity
following exposure to AlCls, indicating cytotoxicity. As a reporter gene,
f-galactosidase provides an indirect measure of hsp70 expression.
Typically, the induction of hsp70 by environmental chemicals is asso-
ciated with early cellular stress and cytotoxic responses. Several studies
have employed p-galactosidase activity as a marker for hsp70 expression
under stress conditions [46]. The X-gal staining results were consistent
with the findings of the ONPG assay, with the highest f-galactosidase
activity observed in larvae exposed to 80 pM AlCls. The use of B-galac-
tosidase activity as a marker of hsp70 expression in response to cadmium
toxicity has been investigated in transgenic Caenorhabditis elegans. The
ONPG assay was selected because it provides a sensitive, quantitative,
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Fig. 3. (a) Comet assay performed on the midgut cells of the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg® exposed to various doses of
Aluminum chloride (AICl3) for 24 hrs of duration (a-e) (b) quantification of the DNA damage. significant at p < 0.05 compared to control. [A-Aluminum chloride;
A1-20 pM; A2-40 uM; A3-60 pM; A4-80 uM].
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Fig. 4. Glutathione (GSH) (a), Glutathione S Transferase (GST) (b), protein carbonyl content (PCC) (c), Caspase-3 (d), Caspase-9 (e), Superoxide dismutase (SOD) (f),
Catalase (CAT) (g), Lipid peroxidation (LPO) (h) activity measured in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) ng exposed to various
doses of A-Aluminum chloride (AICl;) for 24 h of duration. ®significant at p < 0.05 compared to control [A-Aluminum chloride; A1-20 puM; A2-40 uM; A3-60 uM;

A4-80 pM; Data presented as mean+SE].

and reproducible measure of $-galactosidase activity, which serves as an
indirect but highly reliable marker of cellular stress in the hsp70-lacZ
transgenic Drosophila line. In this system, the lacZ reporter gene is
transcriptionally fused to the hsp70 promoter; therefore, any
stress-induced activation of hsp70 in response to toxic exposure results
in proportional expression of f-galactosidase. p-Galactosidase levels
thus accurately reflect the extent of hsp70 induction, making it a
dependable biomarker of toxicity [47]. Because hsp70 is a highly
conserved and rapidly inducible heat-shock protein that responds to
protein denaturation, oxidative imbalance, and general cellular injury,
monitoring p-galactosidase activity through the ONPG assay provides a
robust readout of toxicant-mediated stress [48]. The typan blue exclu-
sion assay was performed to detect tissue damage in third instar
Drosophila larvae, showing a significant dose-dependent increase
following AlCl; exposure. The association between hsp70 expression and
tissue damage has been well established [29]. We also observed a sig-
nificant increase in tissue damage compared following exposure of
Drosophila larvae to AlCls.

The comet assay (single-cell gel electrophoresis assay) is a sensitive
method for visualizing DNA breaks in single-cell suspension [49]. It
detects DNA strand breaks, alkali-labile sites, and other forms of DNA
damage [50-51]. The cellular target for performing comet assay in the
larvae was the midgut, as most toxic substances enter the body via food
into the gut.

Glutathione (GSH) is a tripeptide involved in diverse biological

processes, including enzymatic reactions, molecular transport, biosyn-
thesis of proteins and nucleic acids, microtubule assembly, signal
transduction, gene regulation, and defense against oxidative stress [52].
As one of the major endogenous antioxidants, GSH defends against free
radicals and reactive oxygen species [53]. Under oxidative stress,
intracellular GSH levels decline [54]. GST activity is dependent on a
constant supply of GSH, as its main function is to detoxify xenobiotics by
catalyzing the nucleophilic attack of GSH on electrophilic groups. Dur-
ing oxidative stress, GST activity has been reported to increase as part of
the detoxication response. Akano et al. [55] showed that GSH level
decreases following exposure to AICl; whereas Ogunsuyi et al. [56]
showed a significant increase in GST activity on exposure to AlCls. Inneh
and Eiya [57] reported that exposing Drosophila flies to 40 mM of AlCl3
for about 7 days led to a decline in GST activity. Lipid peroxidation
serves as an indicator of oxidative stress, arising from the generation of
reactive oxygen species (ROS) that cause damage to cellular membranes,
proteins, and DNA. Malondialdehyde (MDA) is the principal reactive
aldehyde generated during the peroxidation of biological membranes
[58]. It can interact with DNA, forming adducts, as well as with proteins,
RNA, and other biomolecules [59]. In the present study, MDA levels
were quantified TBARS assay. In a previous study [60], an increase in
LPO was found when rats were administered to 34 mg/Kg/bw AlCl3 for
about 70 d. Similar to the previous study, we found a dose-dependent
increase in LPO in the larvae exposed to AlCls, confirming the produc-
tion of increased ROS. Protein oxidation is considered one of the earliest



1. Subhan et al.

Mutation Research - Genetic Toxicology and Environmental Mutagenesis 909 (2026) 503905

0.6 10
a
-"]
g 9 T
0.5 a ~ B
L £ 8
* E
~ 7 a
g 04 a s J—
tg £ 2
3+ = 2 £ =
S cos a §g s
- 0 o 9o
© 9 T N g a T
o E e 0o 4 -
o~ a I
0.2 T
- 5 3
3
0.1 g 2
= 1
0 0
Al A2 A3 A4 Control Al A2 A3 A4 Control
(e (2)
12 500
a
a E 450
10 & I
a s E 400
£ z 2 3%
g 3 a
1] o 300 -
e a £ o —
ED 6 — .,me 2 250
=
z g 200 I
[3
4 a
= a
- 5 150
ES "
2 2 100
£
c 50
0 0
Al A2 A3 A4 Control Al A2 A3 A4 Control
(h)

Fig. 4. (continued).

manifestations of oxidative damage and can be assessed through protein
carbonyl content (PCC) [61]. Oyetayo et al. [62] observed an increase in
PCC on following exposure of Drosophila to 100-200 mg/kg of AlCl;3 for
7 d. In the present study, similar results were found when larvae were
exposed to AlCl3. Caspases are well-conserved cysteine proteases that
play a central role in regulating apoptosis. In Drosophila, Drice and
Dronc serve as the functional counterparts of Caspase-3 and Caspase-9,
respectively. To assess further the genotoxicity of AlCls, we performed
the assay on midgut cells, finding an increase in the activities of caspase
3 and 9 and further confirming the toxicity of AlCl3. Superoxide dis-
mutase (SOD) is a crucial antioxidant enzyme that protects cells from
oxidative stress by catalyzing the conversion of the superoxide radical
into molecular oxygen and hydrogen peroxide [63]. SOD helps maintain
cellular redox balance and prevents oxidative damage to proteins, lipids,
and DNA. This enzyme plays a vital role in cellular defense mechanisms,
aging, inflammation, and the pathophysiology of diseases associated
with oxidative stress. In our study, we observed an increase in the level
of SOD following exposure of larvae to AlCls, indicating that Al may
interfere with antioxidant activity by suppressing antioxidant enzymes,
and aligning with findings from other studies [60,64]. Catalase (CAT) is
a crucial intracellular antioxidant enzyme located in the peroxisomes of
aerobic cells. It plays an essential role in protecting cells from oxidative
stress. We found that activity of CAT increased following exposure of
larvae to AlCl3 and implying that Al may impair antioxidant defense by
reducing CAT activity, consistent with previous studies [65-66].
Exposure to AlCl3 resulted in a reduction in emergence and devel-
opmental rate. AlCl3 can cause a range of complex functional and
developmental impairments as well as interfering with signaling

processes [67-68]. The transformation rate from larvae to pupae and
from pupae to adults decreased in a dose-dependent manner. In insects,
the midgut is regarded as the most metabolically active region. In
D. melanogaster larvae, imidacloprid is metabolized in the midgut, and
its metabolites are rapidly excreted. In vivo xenobiotic metabolism in
insects is likely to be highly complex [69]. For many compounds, the
resulting metabolites have been reported to exhibit greater toxicity than
the parent substances. At higher doses, the larvae failed to pupate,
resulting in a significant reduction in the mean number of pupae formed.
Likewise, the decreased rate of pupae developing into adults may be
attributed to Al, at elevated concentrations, disrupting the activity of
essential enzymes required for hormone production during
metamorphosis.

5. Conclusions

Exposure of third-instar larvae to AlCls caused toxic effects spanning
development, physiology, and cellular redox balance. Developmentally,
AlICls delays pupation and reduces adult emergence, indicating inter-
ference with growth and metamorphosis. At the biochemical level,
exposed flies consistently exhibit oxidative stress, evidenced by elevated
lipid peroxidation, protein oxidation, and ROS generation, along with
depletion of reduced glutathione, thiols, and antioxidant enzymes such
as SOD, CAT, and GST. These changes coincide with histological and
functional indicators of tissue and neuronal damage. In addition, AlCls
exposure increases f-galactosidase activity and ONPG hydrolysis,
reflecting lysosomal destabilization and a senescence-like response.
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