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A B S T R A C T

Drosophila melanogaster third-instar larvae were exposed to AlCl₃ in the diet for 24 h. Dose-dependent reductions 
in pupation and adult emergence were observed, Biochemical analyses revealed significantly elevated oxidative 
stress markers: increased lipid peroxidation and protein oxidation and depletion of reduced glutathione and 
antioxidant enzymes such as superoxide dismutase, catalase, and glutathione transferase. At higher concentra
tions, larvae also showed increased β-galactosidase activity and ONPG hydrolysis, suggesting lysosomal 
dysfunction and senescence-like responses.

1. Introduction

Metals, many of which are vital for biological processes, occur 
naturally in the Earth’s crust [1]. Aluminum (Al), the third most abun
dant element, has broad industrial applications, including in the phar
maceutical, chemical, construction, and food processing industries [2]. 
Under natural conditions, Al has low bioavailability; however, human 
activities have significantly increased its mobilization, turning it into a 
pervasive environmental toxicant [3]. Al is present in the human diet, 
both as a natural food component and as an additive in processed 
products. Processed cheese, bakery products, cereals, soft drinks, coffee, 
rice, biscuits, and dairy substitutes often contain Al additives [4]. 
Compounds such as sodium aluminum sulfate, sodium aluminum 
phosphate, and sodium aluminosilicate serve as stabilizers in food 
manufacturing. According to the World Health Organization (WHO), the 
tolerable daily intake is 1 mg Al per kg body weight (WHO, 2023). 
Nevertheless, current levels of exposure may exceed this limit. Al 
exposure arises from multiple sources, including diet, food additives, 
environment, industry effluents, and occupational settings [5–6]. 
Certain crops, including rice, potatoes, spinach, herbs, and spices, 
accumulate Al at higher levels [7–8]. Al concentration in fruits and 
vegetables is influenced by factors such as soil acidity, irrigation water 

quality, and plant type [9].
The extent of Al absorption depends strongly on the route of expo

sure, with ingestion of food and water being the primary source of 
systemic uptake. Gastrointestinal absorption has been documented in 
several invertebrate models, including Drosophila [10–11], the land snail 
Helix aspersa [12–13], the crayfish Pacifastacus leniusculus [14], the 
nematode Caenorhabditis elegans [15], and the earthworm Eisenia andrei 
[16]. Al toxicity arises through several mechanisms, including compe
tition with essential metals, alteration of protein structures [17], and 
induction of oxidative stress [18]. Recent work in Drosophila and other 
model systems shows that AlCl₃ exposure causes oxidative stress and 
developmental and neurobehavioral deficits. These findings underscore 
the toxicity of Al and the value of Drosophila for mechanistic and miti
gation studies [19–21].

Drosophila melanogaster is a useful model organism in toxicology 
studies [22–24]. Its suitability arises from the ease with which com
pounds can be incorporated into the diet of larvae or adults, enabling 
investigation of effects on development, morphology, and physiology 
and making Drosophila a practical system for assessing metal toxicity 
[25]. The fly’s short life-cycle allows researchers to study developmental 
and adult-stage toxicity within a short time-frame. Drosophila shares 
significant genetic similarity with humans, with approximately 75 % of 
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human disease-related genes having orthologs in the fly genome [26]. 
This conservation enhances the relevance of findings to human health.

We have investigated the effects of AlCl₃ on third-instar larvae of 
transgenic Drosophila melanogaster (hsp70-lacZ) Bg9.

2. Materials and methods

2.1. Fly strain and treatment

Drosophila melanogaster (hsp70-lacZ) Bg9 transgenic strain, used in 
the present study, is genetically modified to produce bacterial β-galac
tosidase along with Hsp70 in response to stress [27]. AlCl3 was pur
chased from SRL (India) and mixed in the diet at final concentrations of 
20, 40, 60, and 80 µM. The concentrations of AlCl₃ were incorporated 
during the preparation of the diet. While the diet remained in a liquid 
state, an AlCl₃ stock solution was prepared and added in appropriate 
amounts to achieve final concentrations of 20, 40, 60, and 80 µM. After 
thorough mixing to ensure uniform distribution, the diet was allowed to 
solidify.

The LC₅₀ value for AlCl₃, determined by exposing third-instar larvae 
to a range of AlCl₃ concentrations, was approximately 400 µM. The 
highest dose used in the present study was less than one-fourth of this 
LC₅₀ value.

2.2. O-nitrophenyl-β-D-galactopyranoside (ONPG) assay

Hsp70 expression serves as a valuable indicator of cytotoxicity [28]. 
The method of Nazir et al. [29] was used. Larvae were placed in 
Eppendorf tubes (30 larvae per tube; five replicates per group) and 
rinsed with phosphate buffer. They were permeabilized with acetone 
and incubated in O- Nitrophenol beta galactopyraniside (ONPG) buffer 
consisting of MgSO4, Na2HPO4, Na2H2PO4, ONPG, 
beta-mercaptoethanol and KCl 600 μl.

The reaction was stopped by adding Na2CO3, (1 M) 300 μl.
The reaction was quantified by measuring absorbance at 420 nm.

2.3. In situ histochemical β-galactosidase activity

Ten larvae per treatment group were dissected in Pole’s salt solution 
(PSS) according to the method of Chowdhuri et al. [28], with each group 
having five replicates. The tissue explants tissue samples were incubated 
overnight in X-gal staining solution. The samples were fixed in 2.5 % 
glutaraldehyde solution and subsequently washed with sodium phos
phate buffer and observed under the microscope.

2.4. Trypan blue exclusion test

Tissue damage in the larvae was evaluated by the Trypan blue 
exclusion assay [30]. The explants of ten larvae per treatment (five 
replicates per group) were isolated and rinsed in phosphate-buffered 
saline (PBS). The larvae were stained with Trypan blue for 30 min, 
thoroughly washed in PBS, and assessed for dark blue staining. Scoring 
was performed using a composite index for each larva: no color = 0; any 
blue color = 1; dark blue staining = 2; large patches of dark staining = 3; 
and complete staining of most cells = 4 [31].

2.5. Comet assay

The comet assay was performed following the method of Mukho
padhyay et al. [32]. Base slides were prepared by heating 1 % 
normal-melting agarose (NMA), coating one-third of frosted slides, and 
allowing them to solidify at room temperature. Midguts were isolated 
from 20 larvae per treatment group, with three biological replicates per 
group, and collected in PBS, 50 µl. After removing the PBS, collagenase 
(0.5 mg/ml in PBS, pH 7.4, 300 µl) was added, and the samples were 
incubated before slide preparation. For embedding, 75 µl of the cell 

suspension was mixed with 1.5 % low-melting-point agarose (LMPA), 
80 µl, applied onto the pre-coated slides, covered with a coverslip for 
10 min, and then the coverslip was removed. For electrophoresis, slides 
were placed in the chamber and covered with a chilled alkaline solution 
(1 mM Na₂EDTA and 300 mM NaOH, pH > 13) for a 10-min. unwinding 
period. Electrophoresis was then performed for 15 min at 0.7 V/cm and 
300 mA, at 4 ◦C. Following electrophoresis, slides were rinsed three 
times with neutralizing buffer (0.4 M Tris) and stained in the dark for 
10 min with ethidium bromide (20 µg/ml; 75 µl per slide). The slides 
were subsequently rinsed with chilled distilled water and covered with 
coverslips. Cells were analyzed under a fluorescence microscope 
(Optika, Italy). Using Comet Score 1.5 software, 25 cells per slide were 
randomly selected, and the mean tail length (in arbitrary units) was 
calculated to evaluate DNA damage.

2.6. Preparation of homogenate for biochemical assays

The larvae (100 larvae/treatment; five replicates/group) and control 
third instar larvae fed only on diet were homogenized in cold homoge
nizing buffer (0.1 M phosphate buffer containing 0.15 M KCl; pH 7.4, 
1 ml). The supernatant obtained after centrifugation at 9000 × g was 
used for determination of glutathione (GSH) content, glutathione 
transferase (GST) activity, protein carbonyl content (PCC), and TBARS 
levels, using a spectrophotometer (Model: UV-1800 Shimadzu UV 
Spectrophotometer) for absorbance measurements.

2.6.1. Glutathione (GSH) content
Glutathione (GSH) content was estimated calorimetrically using 

Ellman’s reagent according to the procedure of Jollow et al. [33]. The 
supernatant was precipitated with 4 % sulphosalicyclic acid in the ratio 
of 1:1. The samples were kept at 4 ◦C for 1 h and then subjected to 
centrifugation at 4200 rpm for 10 min. at 4 ◦C. The assay mixture 
consisted of 0.1 M phosphate buffer, 550 µl; supernatant, 100 µl; and 5, 
5-dithio-bis-(2-nitrobenzoic acid) (DTNB) 100 µl (0.01 M). Absorbance 
was read at 412 nm and the results were expressed as micromol GSH/g 
tissue.

2.6.2. Glutathione transferase (GST) activity
Glutathione transferase (GST) activity was determined using the 

method of Habig et al. [34]. The reaction mixture consisted of 0.1 M 
phosphate buffer, 500 µl; 10 mM 1-chloro-2,4-dinitrobenzene (CDNB), 
150 µl; 10 mM reduced glutathione, 200 µl; and supernatant, 50 µl. 
Absorbance was measured at 340 nm and enzyme activity was expressed 
as micromole CDNB conjugate/min/mg protein.

2.6.3. TBARS assay
TBARS were measured according to the method of Ohkawa et al. 

[35]. The reaction mixture consisted of 10 mM tert-butyl-hydrox
ytoluene (BHT), 5 µl; 0.67 % thiobarbituric acid, 200 µl; 1 % phosphoric 
acid, 600 µl; distilled water, 105 µl; and supernatant, 90 µl. The resulting 
mixture was incubated at 90 ◦C for 45 min and absorbance was 
measured at 535 nm. Results were expressed as micromole TBARS for
med/h/g tissue.

2.6.4. Protein carbonyl (PCC) content
Protein carbonyl content was estimated according to the protocol of 

Hawkins et al. [36]. Homogenate was diluted to a protein concentration 
~1 mg/ml. A sample of ~250 µl of each diluted homogenate was taken 
in an Eppendorf centrifuge tube. 2,4-Dinitrophenylhydrazine, 10 mM, in 
2.5 M HCl; 250 µl; was added. The sample was vortexed and kept in the 
dark for 20 min. trichloroacetic acid (TCA; 50 % (w/v), ~ 125 µl, was 
added, mixed thoroughly and incubated for 15 min at − 20 ◦C. The tubes 
were then centrifuged at 4 ◦C; 10 min; 9000 rpm. The supernatant was 
discarded and the pellet was washed twice with ice cold ethanol: ethyl 
acetate (1:1). Finally, the pellets were re-dissolved in 6 M guanidine HCl, 
1 ml, and absorbance was read at 370 nm.
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2.6.5. Spectrophotometric assay for caspase-9 (Dronc) and caspase-3 
(Drice) activities

The assay was performed according to the manufacturer’s protocol 
with some modification (Bio-Vision, Milpitas, CA). The assay was based 
on spectrophotometric detection of the chromophore p-nitroanilide 
(pNA) obtained after specific action of caspase-3 and caspase-9 on tet
rapeptide substrates, DEVD-pNA and LEHD-pNA, respectively. The 
assay mixture consisted of cell suspension, 50 µl, and chilled cell lysis 
buffer, incubated on ice for 10 min. After incubation, 2X reaction buffer 
(containing 10 mM DTT), 50 µl, with 200 µM substrate (DEVD-pNA for 
Drice, and IETD-pNA for Dronc) was added and incubated at 37 ◦C for 
1.5 h. The reaction was quantified at 405 nm.

2.6.6. Superoxide dismutase activity
The method of Marklund and Marklund [37] was used. Reaction 

mixtures consisted of sample, 17 μl, and 0.1 M phosphate buffer, 950 μl. 
The reaction was initiated by adding pyrogallol (4.5 mM). Absorbance at 
420 nm was recorded every 30 s for 3 min and results were expressed as 
units/mg protein.

2.6.7. Catalase activity
Activity was estimated using the method of Beers and Sizer [38]. 

Homogenate (~50 μl) was mixed with 0.1 mol/l phosphate buffer, 
438 μl, and 0.5 mol/l H2O2, 250 μl was added and absorbance was read 
at 240 nm. Activity was expressed as μmol of H2O2 consumed/min/mg 
protein.

2.7. Effect on pupation and emergence of flies

Fifty first-instar larvae were introduced in the vials containing the 
desired concentration of AlCl3. The numbers of pupae followed by the 
numbers of emerged flies were recorded in the control and treated 
groups for 20 days. Three sets of each treatment were employed in the 
study. From the fourth day, numbers of larvae pupate followed by 
number of emerging flies were recorded separately. Data was expressed 
as the mean of three replicates (50 larvae/replicate) [39].

2.8. Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA), 
followed by Tukey’s post hoc test, by using GraphPad Prism software 
[version 5.0]. For pupation and emergence long run test was used for the 
analysis. Significance level was set as p < 0.05.

3. Results

Dose-dependent increases, significant relative to the controls at all 
AlCl₃ doses tested, were observed in the following indicators of toxicity: 
GST activity (Fig. 4b); caspase-3 activity (Fig. 4d); SOD activity (Fig. 4f). 
For the following indicators of toxicity, increases, significant relative to 
the controls, were observed at 40 µM AlCl₃ doses and higher, although 
not at the lowest (20 µM dose: β-galactosidase activity (Fig. 1); X-gal 
staining (Fig. S1); tissue damage (Fig. S2 and Fig.)2); DNA damage 
(midgut cells of third-instar larvae, Fig. 3a and b; Fig. 4a); PCC (Fig. 4c; 
caspase-9 activity; catalase activity (Fig. 4g); TBARS (Fig. 4h).

Results for the rate of pupation and emergence of flies are shown 
(Fig. S3a and b). Pupation began on the fifth day in both the exposed and 
control groups. A dose-dependent delay in the rate of pupation was 
observed in larvae exposed to doses > 20 µM. Emergence began from 
day 12 onward in both exposed and control groups. A dose-dependent 
and significant reduction in emergence rate was observed in larvae 
exposed to dose > 20 µM.

4. Discussion

We have confirmed the toxicity of AlCl3 in third-instar larvae of 

transgenic Drosophila melanogaster (hsp-70 lac Z) Bg9. Al (Al) is one of the 
most widespread metals in the Earth’s crust but it has no known 
essential role in metabolism [3]. Al exposure has been linked to the onset 
and progression of neurological disorders, including Alzheimer’s dis
ease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS) 
[40–42]. AlCl3 has been reported to increase oxidative stress and reduce 
antioxidant defense mechanisms [43–44]. Here, we found a reduction in 
GSH content and increases in GST, TBARS, PCC, CAT and SOD activities. 
Delay in pupation and emergence was observed. Oxidative stress arises 
when generation of reactive oxygen species (ROS) exceeds capacity to 
counteract their harmful effects. Such an imbalance can result in 
extensive cellular injury, including membrane disruption, protein al
terations, DNA damage, and eventually cell death [45].

We observed a significant increase in β-galactosidase activity 
following exposure to AlCl3, indicating cytotoxicity. As a reporter gene, 
β-galactosidase provides an indirect measure of hsp70 expression. 
Typically, the induction of hsp70 by environmental chemicals is asso
ciated with early cellular stress and cytotoxic responses. Several studies 
have employed β-galactosidase activity as a marker for hsp70 expression 
under stress conditions [46]. The X-gal staining results were consistent 
with the findings of the ONPG assay, with the highest β-galactosidase 
activity observed in larvae exposed to 80 µM AlCl3. The use of β-galac
tosidase activity as a marker of hsp70 expression in response to cadmium 
toxicity has been investigated in transgenic Caenorhabditis elegans. The 
ONPG assay was selected because it provides a sensitive, quantitative, 

Fig. 1. β-galactosidase activity measured in the third instar larvae of transgenic 
Drosophila melanogaster (hsp70-lacZ) Bg9 exposed to various doses of Aluminum 
chloride (AlCl3) for 24 hrs of duration. asignificant at p < 0.05 compared to 
control [A-Aluminum chloride; A1–20 µM; A2–40 µM; A3–60 µM; A4–80 µM].

Fig. 2. Quantification of the tissue damage observed in the third instar larvae 
of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 exposed to various doses 
of Aluminum chloride (AlCl3) for 24 hrs of duration. asignificant at p < 0.05 
compared to control. [A-Aluminum chloride; A1–20 µM; A2–40 µM; A3–60 µM; 
A4–80 µM].
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Fig. 3. (a) Comet assay performed on the midgut cells of the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 exposed to various doses of 
Aluminum chloride (AlCl3) for 24 hrs of duration (a-e) (b) quantification of the DNA damage. asignificant at p < 0.05 compared to control. [A-Aluminum chloride; 
A1–20 µM; A2–40 µM; A3–60 µM; A4–80 µM].

I. Subhan et al.                                                                                                                                                                                                                                  Mutation Research - Genetic Toxicology and Environmental Mutagenesis 909 (2026) 503905 

4 



and reproducible measure of β-galactosidase activity, which serves as an 
indirect but highly reliable marker of cellular stress in the hsp70-lacZ 
transgenic Drosophila line. In this system, the lacZ reporter gene is 
transcriptionally fused to the hsp70 promoter; therefore, any 
stress-induced activation of hsp70 in response to toxic exposure results 
in proportional expression of β-galactosidase. β-Galactosidase levels 
thus accurately reflect the extent of hsp70 induction, making it a 
dependable biomarker of toxicity [47]. Because hsp70 is a highly 
conserved and rapidly inducible heat-shock protein that responds to 
protein denaturation, oxidative imbalance, and general cellular injury, 
monitoring β-galactosidase activity through the ONPG assay provides a 
robust readout of toxicant-mediated stress [48]. The typan blue exclu
sion assay was performed to detect tissue damage in third instar 
Drosophila larvae, showing a significant dose-dependent increase 
following AlCl3 exposure. The association between hsp70 expression and 
tissue damage has been well established [29]. We also observed a sig
nificant increase in tissue damage compared following exposure of 
Drosophila larvae to AlCl3.

The comet assay (single-cell gel electrophoresis assay) is a sensitive 
method for visualizing DNA breaks in single-cell suspension [49]. It 
detects DNA strand breaks, alkali-labile sites, and other forms of DNA 
damage [50–51]. The cellular target for performing comet assay in the 
larvae was the midgut, as most toxic substances enter the body via food 
into the gut.

Glutathione (GSH) is a tripeptide involved in diverse biological 

processes, including enzymatic reactions, molecular transport, biosyn
thesis of proteins and nucleic acids, microtubule assembly, signal 
transduction, gene regulation, and defense against oxidative stress [52]. 
As one of the major endogenous antioxidants, GSH defends against free 
radicals and reactive oxygen species [53]. Under oxidative stress, 
intracellular GSH levels decline [54]. GST activity is dependent on a 
constant supply of GSH, as its main function is to detoxify xenobiotics by 
catalyzing the nucleophilic attack of GSH on electrophilic groups. Dur
ing oxidative stress, GST activity has been reported to increase as part of 
the detoxication response. Akano et al. [55] showed that GSH level 
decreases following exposure to AlCl3 whereas Ogunsuyi et al. [56]
showed a significant increase in GST activity on exposure to AlCl3. Inneh 
and Eiya [57] reported that exposing Drosophila flies to 40 mM of AlCl3 
for about 7 days led to a decline in GST activity. Lipid peroxidation 
serves as an indicator of oxidative stress, arising from the generation of 
reactive oxygen species (ROS) that cause damage to cellular membranes, 
proteins, and DNA. Malondialdehyde (MDA) is the principal reactive 
aldehyde generated during the peroxidation of biological membranes 
[58]. It can interact with DNA, forming adducts, as well as with proteins, 
RNA, and other biomolecules [59]. In the present study, MDA levels 
were quantified TBARS assay. In a previous study [60], an increase in 
LPO was found when rats were administered to 34 mg/Kg/bw AlCl3 for 
about 70 d. Similar to the previous study, we found a dose-dependent 
increase in LPO in the larvae exposed to AlCl3, confirming the produc
tion of increased ROS. Protein oxidation is considered one of the earliest 

Fig. 4. Glutathione (GSH) (a), Glutathione S Transferase (GST) (b), protein carbonyl content (PCC) (c), Caspase-3 (d), Caspase-9 (e), Superoxide dismutase (SOD) (f), 
Catalase (CAT) (g), Lipid peroxidation (LPO) (h) activity measured in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 exposed to various 
doses of A-Aluminum chloride (AlCl3) for 24 h of duration. asignificant at p < 0.05 compared to control [A-Aluminum chloride; A1–20 µM; A2–40 µM; A3–60 µM; 
A4–80 µM; Data presented as mean±SE].
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manifestations of oxidative damage and can be assessed through protein 
carbonyl content (PCC) [61]. Oyetayo et al. [62] observed an increase in 
PCC on following exposure of Drosophila to 100–200 mg/kg of AlCl3 for 
7 d. In the present study, similar results were found when larvae were 
exposed to AlCl3. Caspases are well-conserved cysteine proteases that 
play a central role in regulating apoptosis. In Drosophila, Drice and 
Dronc serve as the functional counterparts of Caspase-3 and Caspase-9, 
respectively. To assess further the genotoxicity of AlCl3, we performed 
the assay on midgut cells, finding an increase in the activities of caspase 
3 and 9 and further confirming the toxicity of AlCl3. Superoxide dis
mutase (SOD) is a crucial antioxidant enzyme that protects cells from 
oxidative stress by catalyzing the conversion of the superoxide radical 
into molecular oxygen and hydrogen peroxide [63]. SOD helps maintain 
cellular redox balance and prevents oxidative damage to proteins, lipids, 
and DNA. This enzyme plays a vital role in cellular defense mechanisms, 
aging, inflammation, and the pathophysiology of diseases associated 
with oxidative stress. In our study, we observed an increase in the level 
of SOD following exposure of larvae to AlCl3, indicating that Al may 
interfere with antioxidant activity by suppressing antioxidant enzymes, 
and aligning with findings from other studies [60,64]. Catalase (CAT) is 
a crucial intracellular antioxidant enzyme located in the peroxisomes of 
aerobic cells. It plays an essential role in protecting cells from oxidative 
stress. We found that activity of CAT increased following exposure of 
larvae to AlCl3 and implying that Al may impair antioxidant defense by 
reducing CAT activity, consistent with previous studies [65–66].

Exposure to AlCl3 resulted in a reduction in emergence and devel
opmental rate. AlCl3 can cause a range of complex functional and 
developmental impairments as well as interfering with signaling 

processes [67–68]. The transformation rate from larvae to pupae and 
from pupae to adults decreased in a dose-dependent manner. In insects, 
the midgut is regarded as the most metabolically active region. In 
D. melanogaster larvae, imidacloprid is metabolized in the midgut, and 
its metabolites are rapidly excreted. In vivo xenobiotic metabolism in 
insects is likely to be highly complex [69]. For many compounds, the 
resulting metabolites have been reported to exhibit greater toxicity than 
the parent substances. At higher doses, the larvae failed to pupate, 
resulting in a significant reduction in the mean number of pupae formed. 
Likewise, the decreased rate of pupae developing into adults may be 
attributed to Al, at elevated concentrations, disrupting the activity of 
essential enzymes required for hormone production during 
metamorphosis.

5. Conclusions

Exposure of third-instar larvae to AlCl₃ caused toxic effects spanning 
development, physiology, and cellular redox balance. Developmentally, 
AlCl₃ delays pupation and reduces adult emergence, indicating inter
ference with growth and metamorphosis. At the biochemical level, 
exposed flies consistently exhibit oxidative stress, evidenced by elevated 
lipid peroxidation, protein oxidation, and ROS generation, along with 
depletion of reduced glutathione, thiols, and antioxidant enzymes such 
as SOD, CAT, and GST. These changes coincide with histological and 
functional indicators of tissue and neuronal damage. In addition, AlCl₃ 
exposure increases β-galactosidase activity and ONPG hydrolysis, 
reflecting lysosomal destabilization and a senescence-like response.

Fig. 4. (continued).
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