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Abstract
In view of the importance of environmental protection and resource recovery, recycling of spent lithium ion batteries (LIBs) 
is quite necessary. In the present study, lithium and copper are recycled to lithium carbonate and copper oxide from anode 
electrode material of the spent LIBs. The anode electrode material is firstly treated with hydrochloric acid to leach lithium 
(96.6%) and then with nitric acid to leach copper (97.6%). Furthermore, lithium and copper are recovered as lithium carbonate 
and copper oxide from their respective solutions using precipitation and calcinations. These synthesized products are further 
characterized using XRD, FE-SEM, and EDX analysis. Finally, a simple process is proposed for the recovery of lithium and 
copper from anode electrode material of spent LIBs.
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Introduction

Sony Corporation firstly introduced lithium ion batteries 
in early 1990s (Castillo et al. 2011; Paulino et al. 2008). 
Lithium-ion batteries (LIBs) are extensively used as a power 
source in many portable electronic devices such as digital 
cameras, mobile phones, computers, and electric vehicles 
(Nan et al. 2005, 2006; Cabral-Neto et al. 2023). They are 
used because of following features like high energy density, 
high cell voltage, lighter weight, low self-discharge rate, and 
wider operating temperature range (Jha et al. 2013; Zhang 
et al. 2014). Rapid urbanization and digitalization has stimu-
lated the production and consumption of LIBs. By 2035, an 
amount of 6.76 million is expected for the global LIB market 

(Palacin and deGuibert 2016; Zhang et al. 2018). With 1.2 
billion users, the largest mobile phone market is India, lead-
ing to the huge consumption and demand of LIBs by 2030 
(Upadhyay 2019; Trends in Lithium-ion Battery Reuse and 
Recycling 2019).

The bulk disposal or landfilling of waste LIBs causes 
soil and water contamination due to release of electrolytes 
and heavy metals, leading to a threat to the ecological and 
environmental sustainability (Chen et al. 2015). Moreover, 
health effect due to air pollution is resulted by the emission 
of gases due to discharge of lithium (Pathak et al. 2017). 
Therefore, waste management agencies as well as environ-
mentalists are highly concerned toward the challenge posed 
for management of spent LIBs effectively (Meshram et al. 
2020). Valuable metals, organic compounds, plastics, and 
other materials are included in spent LIBs; the contents vary 
depending on the manufacturer and kind of battery (Shin 
et al. 2005). Moreover, the metal values locked in spent LIBs 
can be of great interest as an alternative resource if recycled 
appropriately (Srivastava and Pathak 2020). The main focus 
of the treatment technologies is on cathode material in order 
to recover various precious as well as valuable metals (Islam 
et al. 2021; Porvali et al. 2019; Zhuang et al. 2019; Lu et al. 
2022; Chen et al. 2023), whereas only scarce studies are 
available on recycling and recovery from anode materials 
(Natarajen et al. 2018; Guo et al. 2016; Yang et al. 2021).
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The lithium content is above the environmental standards 
in the anode material of the LIBs. In the long-term perspec-
tive, the lithium recovery is to obey environmental laws and 
ecological benefits, as the lithium content and market price 
are low (Meshram et al. 2014). On the other hand, copper 
is also present in the anode material of spent LIBs. With an 
annual increase of around 2.8%, since 1965, every 25 years 
the production of copper is doubled. Copper is essential for 
many applications such as in wires for distribution, trans-
mission, and power generation. By 2050, an excess of cop-
per will be required in order to serve the global electrical 
requirements to establish the system with low carbon energy 
(Henckens and Worrell 2020). Therefore, recycling of cop-
per from waste products is also important.

Different recycling methods such as pyrometallurgical 
and hydrometallurgical methods have been used for the 
recovery of metals from spent LIBs and other matrices. The 
recovery of valuable metals by pyrolysis is disadvantageous 
of higher temperatures as well as partial separations only, 
which requires again processing and refining. Therefore, 
in view of low energy consumption and higher selectivity, 
researchers prefer hydrometallurgical methods over pyro-
metallurgical (Jha et al. 2013; Meshram et al. 2020; Kumar 
et al. 2023; Dhiman et al. 2024).

Some researchers synthesized LIB anode from nanofibers 
of porous carbon coated with poly(3,4-ethylenedioxythio-
phene/manganese oxide (Abdah et al. 2021). Amici et al. 
(2021) employed polymer electrolyte based on nanosponge 
composite gel for anode material in LIBs. A dangerous 
polarization was reported, when the liquid electrolyte in 
the standard cell was placed with a commercial separator. 
The sulfur cathode and silicon anodes were developed using 
micro-mesoporous carbons of cyclodextrin nanosponges 
(Alidost et al. 2021). A few studies are also focused on 
the development of membranes using biobased gel poly-
mer electrolyte in order to fabricate potassium ion batter-
ies. It is useful for next generation technology for sustain-
able batteries (Manarin et al. 2022). Zhang et al. (2024a, 
b) applied metal organic framework on the enhancement of 
performance of LIBs. The results suggest that the frame-
work not only enhances battery life cycle and cycle stability 
but also inhibits formation of lithium dendrites. Similarly, 
high-performance batteries of zinc-metal were developed 
using cross-linked cellulose hydrogel electrolyte (Zhang 
et al. 2024a, b).

A thorough literature survey on the lithium and cop-
per recovery from anodic substances of spent LIBs has 
indicated that none of previous studies has investigated 
two acids in a single leaching process and none of stud-
ies recovered lithium and copper as lithium carbonate 
and copper oxide from anode materials of spent LIBs. 
Henceforth, in the present study a simple method was 
developed for the recovery of lithium and copper from the 

anode material of spent LIBs. After the pre-treatment of 
spent LIBs, anode material was separated from the cop-
per layer from anode. The anode electrode material was 
leached with different mineral acids to optimize best leach-
ing agent for lithium and copper. Finally, the solution of 
lithium after leaching with HCl was used to precipitate 
lithium as lithium carbonate. Thereafter, copper recovered 
as copper oxide from the solution of copper after leaching 
with HNO3 in the next step. The prepared materials have 
been characterized through XRD, FESEM, and EDX.

Experimental

Material and methods

The spent LIBs used in this research were collected from 
the local market. Sodium hydroxide, sodium carbonate, 
nitric acid (HNO3), sulfuric acid (H2SO4), and hydrochloric 
acid (HCl) employed in the study are analytical grade and 
procured from Merck. All the solutions have been prepared 
using ultrapure water. For the assurance of reproducibility, 
the experiments were conducted in triplicates.

Instrument

Inductively coupled plasma–mass spectrometer (ICP-MS, 
Agilent 4650) was employed to check metal ion concen-
trations in digested sample and leach liquors. The crystal 
structure of synthesized lithium carbonate and copper oxide 
was analyzed by X-ray diffraction (XRD), using Bruker dif-
fractometer (AXS D8) with copper-Kα (λ = 1.54 Å) in the 
range of 10–80° (2θ) at a scanning rate of 2° per minute. 
A scanning electron microscope (Jeol 6380LV) with 15 kV 
accelerating voltage was applied to examine the morphology 
of the synthesized products. EDX spectrometer connected to 
SEM was employed to measure the chemical composition.

Dismantling, digestion, and leaching methods 
of spent LIBs

Dismantling

The different parts (anode, cathode, and separator) were sep-
arated after mechanical dismantling of spent LIBs of mobile 
phones collected from local market. The anode materials 
were then collected from anode (copper foil) and dried for 
12 h at 60 °C to remove the moisture (Natarajan et al. 2018). 
Thereafter, a sieve of 75 µm was used to get the fine powder 
of the crushed residue.
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Digestion

To quantify the metal contents in anode materials, 1 g of 
anode powder was digested twice with 20 mL aqua regia (HCl/
HNO3 = 3/1, v/v) for 2 h at 90 °C (Chao et al. 2018) until near 
dryness. The solution obtained after digestion was cooled, 
filtered, and diluted to 100 mL using ultrapure water and ana-
lyzed by ICP-MS for the metal concentrations (Table 1).

Leaching

For the recovery of lithium and copper from the anode materi-
als, different inorganic acids such as nitric acid (HNO3, 65%), 
sulfuric acid (H2SO4, 98%), and hydrochloric acid (HCl, 37%) 
were used as a leaching agents. The leaching experiments were 
conducted in flasks of 500 mL capacity fitted with reflux con-
denser (for recirculation of any evaporated liquid) and placed 
over a ceramic hot plate with magnetic stirring system under 
a fume hood. For each experiment, 1 g sample was placed into 
flask and 50 mL of acid solution (appropriated concentration) 
was added into the flask then heated at 70 °C for a 2 h. The 
contents were stirred at 400 rpm. After leaching of 2 h, the 
samples were withdrawn, filtered, diluted, and analyzed by 
using ICP-MS to read the metal ion concentration in the solu-
tion after appropriate dilutions (Wang et al. 2009). The percent 
leaching is calculated as follows:

where CO (mg/g) is the concentration of metals leached to 
the solution per gram of the added anode material, and CS 
(mg/g) is the corresponding total amount of metals deter-
mined by digestion in aqua regia (mg/g).

Result and discussion

Characterization of anode material of spent LIBs

The anode of spent LIBs mainly consists of a copper foil 
coated with active materials mainly containing graphite. The 
XRD spectrum of anode material also showed the presence 
of graphite reported by Natarajan et al. (2018). The graphite 
also contained sufficient amount of lithium. The high content 
of lithium maybe due to the process of lithium-ion traveling 
between the cathode and anode electrode for energy storage 
and release as well as some of the lithium-ion were inserted 
into the pores of graphite. Therefore, anode material was 
further analyzed by ICP-MS to determine its metal contents. 

(1)Percent leaching(%L) = CO(mg∕g)∕CS(mg∕g) ∗ 100

Table 1 shows the anode material composition, indicating 
that copper and lithium are major part of anode material of 
spent LIBs. Some amount of cobalt, iron, and nickel is also 
present in the sample. The concentration of cobalt (0.009%), 
iron (0.007%), and nickel (0.004%) in anode material of spent 
LIBs is very low, as cobalt, iron, and nickel are not the main 
constituents of anode material. Therefore, the authors have not 
focused on these metals.

Leaching

To select the best leaching agent for the leaching of lithium 
and copper from the anode material of spent LIBs, leaching 
was carried out with HNO3, H2SO4, and HCl under similar 
conditions. For the assurance of reproducibility, the experi-
ments were conducted in triplicates with an experimental error 
of < 5% in the present study.

Effect of hydrochloric acid concentration

HCl concentrations were varied in the range 1–5 mol/L, 
keeping other parameters constant at 70 °C, 2 h, S/L ratio 
1 g/50 mL. Figure 1 shows that the leaching efficiency of lith-
ium was enhanced with rise in HCl concentration from 1 to 
5 mol/L. The leaching efficiency of lithium was 52.5 ± 0.31% 
at 1 mol/L HCl and it increases to 96.6 ± 0.39 at 5 mol/L HCl, 
while leaching of copper was negligible at low concentra-
tion of HCl and at high concentration of HCl (5 mol/L) only 
16.2 ± 0.64% copper was leached.

Effect of sulfuric acid concentration

The H2SO4 concentration was varied in the range 1–5 mol/L, 
keeping other parameters constant at 70 °C, 2 h, S/L ratio 
1 g/50 mL. Figure 2 shows that leaching efficiency of lithium 
was enhanced from 28.5 ± 0.68 to 68.7 ± 0.19% as the con-
centration of H2SO4 increased from 1 to 5 mol/L. In case of 
copper leaching, the leaching efficiency was increased from 
4.8 ± 0.17 to 31.5 ± 0.61%.

Effect of nitric acid concentration

HNO3 concentration was varied in the range 1–5 mol/L, 
keeping other parameters constant at 70 °C, 2 h, S/L ratio 
1 g/50 mL. From Fig. 3, it is evident that the leaching effi-
ciency of lithium was lower in HNO3 medium as compared to 
HCl and H2SO4 medium. The leaching efficiency of lithium 
was increased from 14.4 ± 0.15 to 59.3 ± 0.36% with increasing 

Table 1   Composition of anode 
material of spent LIBs

Metals Li Co Fe Ni Cu

mg/g 33.49 ± 0.18 0.09 ± 0.008 0.07 ± 0.002 0.04 ± 0.003 15.47 ± 0.23
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the HNO3 from 1 mol/L to 5 mol/L. Similarly, copper was 
showed efficient leaching in HNO3 medium. The leaching of 
copper was increased significantly with increasing the HNO3 
from 1 to 3 mol/L then changes only 2 to 3% from 3 to 5 to 
5 mol/L HNO3.

Mechanism of leaching

Leaching of lithium and copper by mineral acid is based 
on solubility of lithium and copper in hydrochloric acid, 
sulfuric acid, and nitric acid. Lithium has high solubility 
in hydrochloric acid and form stable chloride complexes 
of lithium (Mubarok et al. 2021). In sulfuric acid medium, 
when lithium reacts with sulfuric acid, lithium sulfate forms, 
which is less soluble in sulfuric acid compared to hydrochlo-
ric acid, and it may result in the lower leaching efficiency 
in sulfuric acid. In nitric acid medium, lithium nitrate is 
formed during the leaching process (Maulidia et al. 2023). 
Lithium nitrate is also soluble in water. Therefore, lithium 
is also leached with nitric acid, but overall lithium is more 
leached with hydrochloric acid due more stability and solu-
bility toward chloride medium as compared to sulfuric acid 
and nitric acid (Figs. 1, 2, and 3).

In case of copper, the order was reversed. The highest 
leaching of copper was with HNO3 then followed by H2SO4 
and HCl. This is mainly due to strong oxidizing power of 
nitric acid. Nitric acid easily oxidizes the copper metal from 
the waste and solubilizes it into the aqueous solution. Hydro-
chloric and sulfuric acid are not effective for copper leach-
ing, as these require the presence of suitable oxidants (H2O2, 
Cl2, O2, and bacteria) (Kim et al. 2011; Bas et al. 2014). 

Therefore, HCl and HNO3 were found to be best leaching 
agent for lithium and copper, respectively.

After selective leaching of lithium, copper was mostly 
presented in the leach residue, which was recovered by the 
leaching with HNO3. However, HNO3 is more corrosive 
among all the studied acids, but due to strong oxidizing 
nature of HNO3, it is used for the recovery of copper from 
the leach residue after leaching of lithium. From Fig. 3, 
it was shown that the leaching efficiency of copper was 
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Fig. 1   Effect of HCl concentration on the leaching of lithium and 
copper from anode material of spent LIBs. Conditions: temp. = 70 °C, 
time = 2 h, S/L ratio = 1 g/50 mL
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Fig. 2   Effect of H2SO4 concentration on the leaching of lithium and 
copper from anode material of spent LIBs. Conditions: temp. = 70 °C, 
time = 2 h, S/L ratio = 1 g/50 mL
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Fig. 3   Effect of HNO3 concentration on the leaching of Li and Cu 
from anode material of spent LIBs. Conditions: temp. = 70  °C, 
time = 2 h, S/L ratio = 1 g/50 mL



Environmental Science and Pollution Research	

approximately same at 3 mol/L (95.96 ± 2.19) and 4 mol/L 
(98.14 ± 1.65) HNO3. Therefore, 3 mol/L HNO3 was selected 
for the leaching of copper.

Separation of lithium and copper from the anode 
material of spent LIBs

Lithium and copper were separated by two-step leaching 
from the anode material of spent LIBs. In the first step, 5 g 
powder was leached with 4 mol/L HCl at 70 °C, with leach-
ing time of 2 h and solid/liquid ratio 1 g/50 mL. Results 
are presented in Table 2. Around 95% lithium was leached 
with < 10% leaching of copper.

Furthermore, the leach residue was washed with ultrapure 
water then dried at 60 °C in oven for 12 h. The dried leach 
residue was further leached with 3 mol/L HNO3 at 70 °C, 
with leaching time of 2 h and solid/liquid ratio 1 g/50 mL. 
Table 2 shows the results; it was evident from the results 
that > 95% copper was leached.

Recovery of lithium and copper from leach 
liquor

Recovery of lithium

The lithium solution obtained in the “Separation of lithium 
and copper from the anode material of spent LIBs” section 
was used to recover lithium as lithium carbonate. The pH 
of the solution was adjusted to 11 using solution of sodium 
hydroxide. Lithium was precipitated as lithium carbonate 
upon addition of saturated sodium carbonate solution at 
100 °C with continuous stirring. The obtained white pre-
cipitate undergone filtration, washing by hot water, as well 
as drying in an oven for 24 h at 60 °C (Dhiman and Gupta 
2019).

Recovery of copper

The copper solution after leaching of lithium in the “Separa-
tion of lithium and copper from the anode material of spent 
LIBs” section was used to prepare copper oxide. The solu-
tion pH was raised to 8.0 using sodium hydroxide solution. 
A light blue precipitate of copper hydroxide thus obtained 
was filtered, washed with ethanol, and dried at 60 °C in 

an oven. The solid material was kept in muffle furnace at 
350 °C for 4 h to obtain copper oxide (Singh et al. 2009).

The complete process for the recovery of lithium and 
copper from anode material of spent LIBs leach liquor is 
presented as a flow sheet in Fig. 4. Percentage recovery of 
lithium and copper from anode material of spent LIBs as 
oxide/carbonate is reported in Table 3.

Characterization of the synthesized 
products

XRD study

XRD patterns of synthesized lithium carbonate and copper 
oxide along with the bars representing reference spectra 
are given in Fig. 5(a) and (b). Maximum peak intensities 
of lithium carbonate and copper oxide were found at (002) 
and (111) planes, respectively. The prepared materials show 
good agreement between the observed and reference peaks 
(JCPDS No. 00–022-1141 and JCPDS No. 00–006-0416).

The crystallite sizes (D) are 57.7 nm and 10.4 nm for 
lithium carbonate and copper oxide, respectively, which 
were evaluated by Scherrer’s equation,

D = 0.9λ/ βCos θ.
where the diffraction peak full width at half maximum is 

β, wavelength of X-ray beam is λ, and Bragg’s diffraction 
angle is θ.

FE‑SEM and EDX analysis

The morphology of any substance is mainly useful to 
understand the characteristics of the material such as size 
and shape. Based on the size and shape of the material, it 
can be applied for various applications. The particle sizes 
in nano-range are also known to enhance the performance 
and efficiency of the material. The morphology of obtained 
lithium carbonate and copper oxide was studied with FE-
SEM analysis (Fig. 6). It is clear that the morphology of 
lithium carbonate is primary sheets. The synthesized cop-
per oxide shows formation of spherical nanoparticles with 
small degree of agglomeration. Aggregations in nanoparti-
cles were observed due to high surface area of contact and 
high surface energy. The mean sizes of lithium carbonate 
and copper oxide nanoparticles calculated by the software 
ImageJ were 165.89 ± 51.54 nm and 38.97 ± 7.89 nm, 

Table 2   Selective separation of 
lithium and copper from anode 
material of spent LIBs by two 
step leaching

Metals I step leaching
(4 mol/L HCl), mg/L

% Leaching II step leaching
(3 mol/L HNO3), mg/L

% Leaching

Li 647.24 ± 28.65 96.63 7.25 ± 0.95 31.52
Cu 25.71 ± 1.24 8.31 277.43 ± 11.79 97.68



	 Environmental Science and Pollution Research

respectively. In order to study the distribution of particle 
sizes, curves were sketched for prepared materials. The 
Gaussian fit confirms the narrow size particle distribution 
(Fig. 6a and b). EDX spectrum for copper oxide indicates 
that it is composed of Cu and O only (Fig. 7).

Conclusion

The electrode scraps and spent LIBs are usually disposed 
improperly, which results in wastage of major resources 
as well as long-term impact on the environment. In this 
study, simple process was developed to recover lithium 
and copper from anode electrode material of spent LIBs. 
The optimum leaching conditions for lithium was HCl 
concentration of 4 mol/L, temperature of 70 °C, solid-
to-liquid ratio of 20 g/L, and leaching time of 2 h. Under 
these conditions, the leaching efficiency for lithium was 
96.6%. Around 97.6% copper was leached under the opti-
mized conditions with HNO3 concentration of 3 mol/L, 

Fig. 4   Flow sheet for the recov-
ery of lithium and copper from 
anode material of spent LIBs

Calcinations at 350 ºC,4 h

pH = 8 using NaOH sol.

Leaching with 4M HCl, 
70 ºC, 2 h, S/L = 1g/50 mL

Leaching with 3M HNO3, 
70 ºC, 2 h, S/L = 1g/50 mL

pH = 11 using NaOH sol.
add Na2CO3 sol., 100 ºC

Discharging & dismantling

Anode

Leach liquor
[Li]

SeparatorCathode

Black powder Cu foil

Residue
[Cu]

Leach liquor
[Cu]

Li2CO3

Spent LIBs

CuO

Cu(OH)2

Table 3   Recovery of lithium and copper as lithium carbonate and 
copper oxide from the anode material of spent LIBs

#  Metal leached per gram of anode material
$  Metal recovered per gram of anode material (calculated from recov-
ered carbonate/oxide)

Metals Leached metal (mg/g)# Recovered 
metal (mg/g)$

Recovery (%)

Li 32.31 ± 0.19 31.98 ± 0.21 98.9
Cu 15.11 ± 0.23 14.97 ± 0.17 99.1
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temperature of 70  °C, solid-to-liquid ratio of 20  g/L, 
and leaching time of 2 h after leaching of lithium. Fur-
thermore, lithium carbonate and copper oxide were syn-
thesized from their recovered respective solution using 
cost-effective precipitating agents. Recovery of copper as 
copper oxide and lithium as lithium carbonate is 99.1% 
and 98.9%, respectively. A simple process for the recycling 
of anode material of spent LIBs is thus proposed. Based 
on the batch scale study, a flow sheet is proposed, which 
can be further extended for industrial application on com-
mercial scale.
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