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Abstract

In view of the importance of environmental protection and resource recovery, recycling of spent lithium ion batteries (LIBs)
is quite necessary. In the present study, lithium and copper are recycled to lithium carbonate and copper oxide from anode
electrode material of the spent LIBs. The anode electrode material is firstly treated with hydrochloric acid to leach lithium
(96.6%) and then with nitric acid to leach copper (97.6%). Furthermore, lithium and copper are recovered as lithium carbonate
and copper oxide from their respective solutions using precipitation and calcinations. These synthesized products are further
characterized using XRD, FE-SEM, and EDX analysis. Finally, a simple process is proposed for the recovery of lithium and

copper from anode electrode material of spent LIBs.
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Introduction

Sony Corporation firstly introduced lithium ion batteries
in early 1990s (Castillo et al. 2011; Paulino et al. 2008).
Lithium-ion batteries (LIBs) are extensively used as a power
source in many portable electronic devices such as digital
cameras, mobile phones, computers, and electric vehicles
(Nan et al. 2005, 2006; Cabral-Neto et al. 2023). They are
used because of following features like high energy density,
high cell voltage, lighter weight, low self-discharge rate, and
wider operating temperature range (Jha et al. 2013; Zhang
et al. 2014). Rapid urbanization and digitalization has stimu-
lated the production and consumption of LIBs. By 2035, an
amount of 6.76 million is expected for the global LIB market
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(Palacin and deGuibert 2016; Zhang et al. 2018). With 1.2
billion users, the largest mobile phone market is India, lead-
ing to the huge consumption and demand of LIBs by 2030
(Upadhyay 2019; Trends in Lithium-ion Battery Reuse and
Recycling 2019).

The bulk disposal or landfilling of waste LIBs causes
soil and water contamination due to release of electrolytes
and heavy metals, leading to a threat to the ecological and
environmental sustainability (Chen et al. 2015). Moreover,
health effect due to air pollution is resulted by the emission
of gases due to discharge of lithium (Pathak et al. 2017).
Therefore, waste management agencies as well as environ-
mentalists are highly concerned toward the challenge posed
for management of spent LIBs effectively (Meshram et al.
2020). Valuable metals, organic compounds, plastics, and
other materials are included in spent LIBs; the contents vary
depending on the manufacturer and kind of battery (Shin
et al. 2005). Moreover, the metal values locked in spent LIBs
can be of great interest as an alternative resource if recycled
appropriately (Srivastava and Pathak 2020). The main focus
of the treatment technologies is on cathode material in order
to recover various precious as well as valuable metals (Islam
et al. 2021; Porvali et al. 2019; Zhuang et al. 2019; Lu et al.
2022; Chen et al. 2023), whereas only scarce studies are
available on recycling and recovery from anode materials
(Natarajen et al. 2018; Guo et al. 2016; Yang et al. 2021).
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The lithium content is above the environmental standards
in the anode material of the LIBs. In the long-term perspec-
tive, the lithium recovery is to obey environmental laws and
ecological benefits, as the lithium content and market price
are low (Meshram et al. 2014). On the other hand, copper
is also present in the anode material of spent LIBs. With an
annual increase of around 2.8%, since 1965, every 25 years
the production of copper is doubled. Copper is essential for
many applications such as in wires for distribution, trans-
mission, and power generation. By 2050, an excess of cop-
per will be required in order to serve the global electrical
requirements to establish the system with low carbon energy
(Henckens and Worrell 2020). Therefore, recycling of cop-
per from waste products is also important.

Different recycling methods such as pyrometallurgical
and hydrometallurgical methods have been used for the
recovery of metals from spent LIBs and other matrices. The
recovery of valuable metals by pyrolysis is disadvantageous
of higher temperatures as well as partial separations only,
which requires again processing and refining. Therefore,
in view of low energy consumption and higher selectivity,
researchers prefer hydrometallurgical methods over pyro-
metallurgical (Jha et al. 2013; Meshram et al. 2020; Kumar
et al. 2023; Dhiman et al. 2024).

Some researchers synthesized LIB anode from nanofibers
of porous carbon coated with poly(3,4-ethylenedioxythio-
phene/manganese oxide (Abdah et al. 2021). Amici et al.
(2021) employed polymer electrolyte based on nanosponge
composite gel for anode material in LIBs. A dangerous
polarization was reported, when the liquid electrolyte in
the standard cell was placed with a commercial separator.
The sulfur cathode and silicon anodes were developed using
micro-mesoporous carbons of cyclodextrin nanosponges
(Alidost et al. 2021). A few studies are also focused on
the development of membranes using biobased gel poly-
mer electrolyte in order to fabricate potassium ion batter-
ies. It is useful for next generation technology for sustain-
able batteries (Manarin et al. 2022). Zhang et al. (2024a,
b) applied metal organic framework on the enhancement of
performance of LIBs. The results suggest that the frame-
work not only enhances battery life cycle and cycle stability
but also inhibits formation of lithium dendrites. Similarly,
high-performance batteries of zinc-metal were developed
using cross-linked cellulose hydrogel electrolyte (Zhang
et al. 2024a, b).

A thorough literature survey on the lithium and cop-
per recovery from anodic substances of spent LIBs has
indicated that none of previous studies has investigated
two acids in a single leaching process and none of stud-
ies recovered lithium and copper as lithium carbonate
and copper oxide from anode materials of spent LIBs.
Henceforth, in the present study a simple method was
developed for the recovery of lithium and copper from the
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anode material of spent LIBs. After the pre-treatment of
spent LIBs, anode material was separated from the cop-
per layer from anode. The anode electrode material was
leached with different mineral acids to optimize best leach-
ing agent for lithium and copper. Finally, the solution of
lithium after leaching with HCI was used to precipitate
lithium as lithium carbonate. Thereafter, copper recovered
as copper oxide from the solution of copper after leaching
with HNOj in the next step. The prepared materials have
been characterized through XRD, FESEM, and EDX.

Experimental
Material and methods

The spent LIBs used in this research were collected from
the local market. Sodium hydroxide, sodium carbonate,
nitric acid (HNOs), sulfuric acid (H,SO,), and hydrochloric
acid (HCI) employed in the study are analytical grade and
procured from Merck. All the solutions have been prepared
using ultrapure water. For the assurance of reproducibility,
the experiments were conducted in triplicates.

Instrument

Inductively coupled plasma—mass spectrometer (ICP-MS,
Agilent 4650) was employed to check metal ion concen-
trations in digested sample and leach liquors. The crystal
structure of synthesized lithium carbonate and copper oxide
was analyzed by X-ray diffraction (XRD), using Bruker dif-
fractometer (AXS D8) with copper-Ka (1=1.54 A) in the
range of 10—80° (26) at a scanning rate of 2° per minute.
A scanning electron microscope (Jeol 6380LV) with 15 kV
accelerating voltage was applied to examine the morphology
of the synthesized products. EDX spectrometer connected to
SEM was employed to measure the chemical composition.

Dismantling, digestion, and leaching methods
of spent LIBs

Dismantling

The different parts (anode, cathode, and separator) were sep-
arated after mechanical dismantling of spent LIBs of mobile
phones collected from local market. The anode materials
were then collected from anode (copper foil) and dried for
12 h at 60 °C to remove the moisture (Natarajan et al. 2018).
Thereafter, a sieve of 75 um was used to get the fine powder
of the crushed residue.
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Digestion

To quantify the metal contents in anode materials, 1 g of
anode powder was digested twice with 20 mL aqua regia (HCl/
HNO;=3/1, v/v) for 2 h at 90 °C (Chao et al. 2018) until near
dryness. The solution obtained after digestion was cooled,
filtered, and diluted to 100 mL using ultrapure water and ana-
lyzed by ICP-MS for the metal concentrations (Table 1).

Leaching

For the recovery of lithium and copper from the anode materi-
als, different inorganic acids such as nitric acid (HNO;, 65%),
sulfuric acid (H,SO,, 98%), and hydrochloric acid (HCL, 37%)
were used as a leaching agents. The leaching experiments were
conducted in flasks of 500 mL capacity fitted with reflux con-
denser (for recirculation of any evaporated liquid) and placed
over a ceramic hot plate with magnetic stirring system under
a fume hood. For each experiment, 1 g sample was placed into
flask and 50 mL of acid solution (appropriated concentration)
was added into the flask then heated at 70 °C for a 2 h. The
contents were stirred at 400 rpm. After leaching of 2 h, the
samples were withdrawn, filtered, diluted, and analyzed by
using ICP-MS to read the metal ion concentration in the solu-
tion after appropriate dilutions (Wang et al. 2009). The percent
leaching is calculated as follows:

Percent leaching(%L) = Co(mg/g)/Cs(mg/g) * 100 (1)

where C, (mg/g) is the concentration of metals leached to
the solution per gram of the added anode material, and Cg
(mg/g) is the corresponding total amount of metals deter-
mined by digestion in aqua regia (mg/g).

Result and discussion
Characterization of anode material of spent LIBs

The anode of spent LIBs mainly consists of a copper foil
coated with active materials mainly containing graphite. The
XRD spectrum of anode material also showed the presence
of graphite reported by Natarajan et al. (2018). The graphite
also contained sufficient amount of lithium. The high content
of lithium maybe due to the process of lithium-ion traveling
between the cathode and anode electrode for energy storage
and release as well as some of the lithium-ion were inserted
into the pores of graphite. Therefore, anode material was
further analyzed by ICP-MS to determine its metal contents.

Table 1 shows the anode material composition, indicating
that copper and lithium are major part of anode material of
spent LIBs. Some amount of cobalt, iron, and nickel is also
present in the sample. The concentration of cobalt (0.009%),
iron (0.007%), and nickel (0.004%) in anode material of spent
LIBs is very low, as cobalt, iron, and nickel are not the main
constituents of anode material. Therefore, the authors have not
focused on these metals.

Leaching

To select the best leaching agent for the leaching of lithium
and copper from the anode material of spent LIBs, leaching
was carried out with HNO;, H,SO,, and HC1 under similar
conditions. For the assurance of reproducibility, the experi-
ments were conducted in triplicates with an experimental error
of <5% in the present study.

Effect of hydrochloric acid concentration

HCI concentrations were varied in the range 1-5 mol/L,
keeping other parameters constant at 70 °C, 2 h, S/L ratio
1 g/50 mL. Figure 1 shows that the leaching efficiency of lith-
ium was enhanced with rise in HCI concentration from 1 to
5 mol/L. The leaching efficiency of lithium was 52.5+0.31%
at 1 mol/LL HCI and it increases to 96.6 +0.39 at 5 mol/LL HCI,
while leaching of copper was negligible at low concentra-
tion of HCI and at high concentration of HCI (5 mol/L) only
16.2+0.64% copper was leached.

Effect of sulfuric acid concentration

The H,SO, concentration was varied in the range 1-5 mol/L,
keeping other parameters constant at 70 °C, 2 h, S/L ratio
1 g/50 mL. Figure 2 shows that leaching efficiency of lithium
was enhanced from 28.5+0.68 to 68.7+0.19% as the con-
centration of H,SO, increased from 1 to 5 mol/L. In case of
copper leaching, the leaching efficiency was increased from
4.8+0.17t031.5+0.61%.

Effect of nitric acid concentration

HNO; concentration was varied in the range 1-5 mol/L,
keeping other parameters constant at 70 °C, 2 h, S/L ratio
1 g/50 mL. From Fig. 3, it is evident that the leaching effi-
ciency of lithium was lower in HNO; medium as compared to
HCl and H,SO, medium. The leaching efficiency of lithium
was increased from 14.4+0.15 to 59.3+0.36% with increasing

Table 1 Composition of anode
material of spent LIBs

Metals Li

Fe Ni Cu

mg/g 33.49+0.18

0.09+0.008

0.07+0.002 0.04+0.003 15.47+0.23
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Fig.1 Effect of HCIl concentration on the leaching of lithium and
copper from anode material of spent LIBs. Conditions: temp.="70 °C,
time=2 h, S/L ratio=1 g/50 mL

the HNO; from 1 mol/L to 5 mol/L. Similarly, copper was
showed efficient leaching in HNO; medium. The leaching of
copper was increased significantly with increasing the HNO;
from 1 to 3 mol/L then changes only 2 to 3% from 3 to 5 to
5 mol/L HNO;.

Mechanism of leaching

Leaching of lithium and copper by mineral acid is based
on solubility of lithium and copper in hydrochloric acid,
sulfuric acid, and nitric acid. Lithium has high solubility
in hydrochloric acid and form stable chloride complexes
of lithium (Mubarok et al. 2021). In sulfuric acid medium,
when lithium reacts with sulfuric acid, lithium sulfate forms,
which is less soluble in sulfuric acid compared to hydrochlo-
ric acid, and it may result in the lower leaching efficiency
in sulfuric acid. In nitric acid medium, lithium nitrate is
formed during the leaching process (Maulidia et al. 2023).
Lithium nitrate is also soluble in water. Therefore, lithium
is also leached with nitric acid, but overall lithium is more
leached with hydrochloric acid due more stability and solu-
bility toward chloride medium as compared to sulfuric acid
and nitric acid (Figs. 1, 2, and 3).

In case of copper, the order was reversed. The highest
leaching of copper was with HNO; then followed by H,SO,
and HCI. This is mainly due to strong oxidizing power of
nitric acid. Nitric acid easily oxidizes the copper metal from
the waste and solubilizes it into the aqueous solution. Hydro-
chloric and sulfuric acid are not effective for copper leach-
ing, as these require the presence of suitable oxidants (H,0,,
Cl,, O,, and bacteria) (Kim et al. 2011; Bas et al. 2014).
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Fig.2 Effect of H,SO, concentration on the leaching of lithium and
copper from anode material of spent LIBs. Conditions: temp.="70 °C,
time=2 h, S/L ratio=1 g/50 mL

Therefore, HC]1 and HNO; were found to be best leaching
agent for lithium and copper, respectively.

After selective leaching of lithium, copper was mostly
presented in the leach residue, which was recovered by the
leaching with HNO; However, HNO; is more corrosive
among all the studied acids, but due to strong oxidizing
nature of HNQO, it is used for the recovery of copper from
the leach residue after leaching of lithium. From Fig. 3,
it was shown that the leaching efficiency of copper was

100
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Fig.3 Effect of HNO; concentration on the leaching of Li and Cu
from anode material of spent LIBs. Conditions: temp.=70 °C,
time=2 h, S/L ratio=1 g/50 mL
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approximately same at 3 mol/L (95.96 +2.19) and 4 mol/L
(98.14 +1.65) HNO;. Therefore, 3 mol/L HNO; was selected
for the leaching of copper.

Separation of lithium and copper from the anode
material of spent LIBs

Lithium and copper were separated by two-step leaching
from the anode material of spent LIBs. In the first step, 5 g
powder was leached with 4 mol/L HCl at 70 °C, with leach-
ing time of 2 h and solid/liquid ratio 1 g/50 mL. Results
are presented in Table 2. Around 95% lithium was leached
with < 10% leaching of copper.

Furthermore, the leach residue was washed with ultrapure
water then dried at 60 °C in oven for 12 h. The dried leach
residue was further leached with 3 mol/L HNO; at 70 °C,
with leaching time of 2 h and solid/liquid ratio 1 g/50 mL.
Table 2 shows the results; it was evident from the results
that>95% copper was leached.

Recovery of lithium and copper from leach
liquor

Recovery of lithium

The lithium solution obtained in the “Separation of lithium
and copper from the anode material of spent LIBs” section
was used to recover lithium as lithium carbonate. The pH
of the solution was adjusted to 11 using solution of sodium
hydroxide. Lithium was precipitated as lithium carbonate
upon addition of saturated sodium carbonate solution at
100 °C with continuous stirring. The obtained white pre-
cipitate undergone filtration, washing by hot water, as well
as drying in an oven for 24 h at 60 °C (Dhiman and Gupta
2019).

Recovery of copper

The copper solution after leaching of lithium in the “Separa-
tion of lithium and copper from the anode material of spent
LIBs” section was used to prepare copper oxide. The solu-
tion pH was raised to 8.0 using sodium hydroxide solution.
A light blue precipitate of copper hydroxide thus obtained
was filtered, washed with ethanol, and dried at 60 °C in

an oven. The solid material was kept in muffle furnace at
350 °C for 4 h to obtain copper oxide (Singh et al. 2009).

The complete process for the recovery of lithium and
copper from anode material of spent LIBs leach liquor is
presented as a flow sheet in Fig. 4. Percentage recovery of
lithium and copper from anode material of spent LIBs as
oxide/carbonate is reported in Table 3.

Characterization of the synthesized
products

XRD study

XRD patterns of synthesized lithium carbonate and copper
oxide along with the bars representing reference spectra
are given in Fig. 5(a) and (b). Maximum peak intensities
of lithium carbonate and copper oxide were found at (002)
and (111) planes, respectively. The prepared materials show
good agreement between the observed and reference peaks
(JCPDS No. 00-022-1141 and JCPDS No. 00-006-0416).

The crystallite sizes (D) are 57.7 nm and 10.4 nm for
lithium carbonate and copper oxide, respectively, which
were evaluated by Scherrer’s equation,

D=0.94/ pCos 6.

where the diffraction peak full width at half maximum is
S, wavelength of X-ray beam is 4, and Bragg’s diffraction
angle is 6.

FE-SEM and EDX analysis

The morphology of any substance is mainly useful to
understand the characteristics of the material such as size
and shape. Based on the size and shape of the material, it
can be applied for various applications. The particle sizes
in nano-range are also known to enhance the performance
and efficiency of the material. The morphology of obtained
lithium carbonate and copper oxide was studied with FE-
SEM analysis (Fig. 6). It is clear that the morphology of
lithium carbonate is primary sheets. The synthesized cop-
per oxide shows formation of spherical nanoparticles with
small degree of agglomeration. Aggregations in nanoparti-
cles were observed due to high surface area of contact and
high surface energy. The mean sizes of lithium carbonate
and copper oxide nanoparticles calculated by the software
ImagelJ were 165.89 +51.54 nm and 38.97 +7.89 nm,

Table 2 Selective separation of

o Metals I step leaching % Leaching II step leaching % Leaching
lithium and copper from anode (4 mol/L HCl), mg/L (3 mol/L HNO;), mg/L
material of spent LIBs by two
step leaching Li 647.24 +£28.65 96.63 7.25+0.95 31.52
Cu 2571+1.24 8.31 277.43+11.79 97.68
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Fig.4 Flow sheet for the recov-
ery of lithium and copper from
anode material of spent LIBs

Spent LIBs

Discharging & dismantling

v A 4

Cathode Anode Separator
Black powder Cu foil
Leaching with 4M HCI,
70°C, 2 h, S/L = 1g/50 mL
Leach liquor Residue
(Li] [Cu]
pH = 11 using NaOH sol. Leaching with 3M HNO3,
add Na,COs sol., 100 °C vy 70°C, 2 h, S/L = 1g/50 mL
Li>CO3 Leach liquor
[Cu]

Table 3 Recovery of lithium and copper as lithium carbonate and
copper oxide from the anode material of spent LIBs

Metals Leached metal (mg/g)# Recovered Recovery (%)
metal (mg/g)$

Li 32.31+0.19 31.98+0.21 98.9

Cu 15.11+0.23 14.97+0.17 99.1

# Metal leached per gram of anode material

$ Metal recovered per gram of anode material (calculated from recov-
ered carbonate/oxide)

respectively. In order to study the distribution of particle
sizes, curves were sketched for prepared materials. The
Gaussian fit confirms the narrow size particle distribution
(Fig. 6a and b). EDX spectrum for copper oxide indicates
that it is composed of Cu and O only (Fig. 7).
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pH = 8 using NaOH sol.

A 4

Cu(OH),

Calcinations at 350 °C,4 h

v

CuO

Conclusion

The electrode scraps and spent LIBs are usually disposed
improperly, which results in wastage of major resources
as well as long-term impact on the environment. In this
study, simple process was developed to recover lithium
and copper from anode electrode material of spent LIBs.
The optimum leaching conditions for lithium was HCI
concentration of 4 mol/L, temperature of 70 °C, solid-
to-liquid ratio of 20 g/L, and leaching time of 2 h. Under
these conditions, the leaching efficiency for lithium was
96.6%. Around 97.6% copper was leached under the opti-
mized conditions with HNO; concentration of 3 mol/L,
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Fig.5 XRD spectra of a lithium carbonate and b copper oxide

temperature of 70 °C, solid-to-liquid ratio of 20 g/L,
and leaching time of 2 h after leaching of lithium. Fur-
thermore, lithium carbonate and copper oxide were syn-
thesized from their recovered respective solution using
cost-effective precipitating agents. Recovery of copper as
copper oxide and lithium as lithium carbonate is 99.1%
and 98.9%, respectively. A simple process for the recycling
of anode material of spent LIBs is thus proposed. Based
on the batch scale study, a flow sheet is proposed, which
can be further extended for industrial application on com-
mercial scale.
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