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ABSTRACT 

In this paper an attempt has to be made to describes in investigation. This paper describes an 

investigation in which a genetic algorithm is used to simulate an artificial environment in 

which various species compete with one another. Each species that exists on this planet is the 

product of millennia of natural selection. Competition for finite resources has produced 

varied species, many of which exhibit specialized behavior that allows them to survive. 

Genetic algorithms acting upon a randomly chosen population, and competing for finite 

resources should produce a near–maximal biomass, with several distinct species exploiting 

different levels of the bio system. Utilizing reproduction, crossover, mutation and inching 

operators, the coding scheme could preserve diversity in predator/prey populations and mass 

while maximizing biomass and sensory performance within the population, particularly in a 

static environment.  

 

Keywords: Mathematical Modeling, Differential Equations, Genetics Algorithms, Artificial 

Ecosystems, Population Dynamics. 

 

1. INTRODUCTION  

 

Darwin’s theory of evolution concludes that natural selection is the key factor in the origin of 

species. Within species, an individual, that reproduces passes on its genetic characteristics. 

Individuals that possess ‘favorable’ traits are more likely to survive, hence future generations 

increasingly exhibit ‘favorable’ traits. Given time, a population’s characteristics can diverge 

significantly from their original makeup. Examining the machinery of natural selection can 

lead to keener appreciation of complex interactions that shape life. Because genetic 

algorithms are based from the mechanisms of reproduction, they provide a clean analogy to 

how real populations can evolve over successive generations. Field observations yield 

glimpses of natural selection’s capacity to produce populations that fully exploit their 

environment. In the real world, this proceed takes millennia. A simulated ecosystem, with a 

diverse initial population, offers a means to view the effects of evolution over hundreds or 

thousands of generations. The recombination of individuals via a genetic algorithm provide 

an elegant means of rewarding variations that maximize their environment. This chapter will 

examine a simulated ecosystem of herbivores and carnivores. Each individual will have 

several characteristics that shall determine the relative success or failure of each organism 

within the environment. The GA operators of reproduction, crossover, mutation, and niching 

will operate on a multi parameter coding. Organisms that can successfully adapt to their 

environment will be favored within the reproductive pool. ‘Winning’ populations will have 
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the greatest increase in mass, with the population existing near the ideal carrying capacity of 

the environment. 

 

About the Work  

There have been numerous works published on simulated organisms and ecosystems. 

Mechanisms of cell chemistry were examined by Rosenberg [18], which simulated enzyme 

reactions using genetic algorithm like operators. The Avida simulated ecosystem shows 

support for the punctuated equilibrium view of evolution, as opposed to a more Darwinian 

gradual model of evolution given by  Adami, C.T., Brown M & Haggerty, J.  2].An artificial 

life program called Tierra is used to model both small and large scale ecosystems. Tierra 

utilizes genetic algorithms to simulate evolutionary change by Ray. T. [19] the tierra system 

creates a diverge population of organisms, but does not optimize resources by the population 

as a whole. To examine this problem, it is useful to look at models of population interaction. 

Two primary engines of ecological change are predation and competition. Ten components of 

functional response to prey and predation given by Kitching, R. L. [14] are: 

 

1. The role of successful search 

2. Time of exposure 

3. Handling time (time taken to eat) 

4. Hunger 

5. Learning by predator 

6. Inhibitions of prey 

7. Exploitation 

8. Interference between predators 

9. Social facilitation 

10. Avoidance learning by prey 

 

Each factor has sub–factors. For instance successful search involves sensory facility, reaction 

distance, speed to predator speed of them and capture success. Relationships are drawn 

between density of predators density of resources, probability of attack, time spent in attack, 

expected gain and number of attacks to derive a success ratio of predation. Smith [21 ] draws 

the conclusion that species that spend most of their time searching for food that takes little 

effect to capture, will be generalists (e.g. hyenas), while species that have abundandent prey 

that takes much effort to capture will be specialists (e.g. cheetahs). Specialization leads to 

speciation. Sub–populations which converge at multiple along the spectrum of the initial 

population will eventually stop sharing genetic information with other sub–populations. 

 

Problem Statement 

The simulated ecosystem will have three components – an environment, a randomly chosen 

initial population of herbivores and carnivores with varied characteristics, and a set of rules 

governing the success or failure of organisms within the ecosystem. The environment has two 

component values carrying capacity and flora color. Carrying capacity refers to the kilograms 

of vegetative matter available for consumption by herbivores and for purposes of the 

simulation is the product of random fluctuations of rainfall and temperature. Flora color 

refers to the predominant shade of the vegetation, and is expressed in terms of red, green and 

blue primaries that allow for colors from black to white. Carrying capacity or flora color may 

be varied during the course of the simulation. 
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The population will consist of randomly chosen individuals with the following coding 

scheme: 

Food Source – 0 (Herbivore), 1(Carnivore)    1 byte 

Ideal Body Weight of adult–5 to 500 kilograms   5 bytes 

Color–Red, Green and Blue values from 0 to 256   6 bytes 

Number of Legs–2 or 4 legs      1 byte 

Vision–Ranging from 0(poor) to 7(great)    3 bytes 

Hearing–Ranging from 0(poor) to 7(great)    3 bytes 

Brain size–Ranging from 0(minimal) to 3(Human like)             5 bytes 

                      Total:        24 bytes 

 

Individuals are allowed to mate freely among all members of their respective herbivore or 

carnivore population, subject to the constraints of the fitness evaluation algorithm. 

 

The fitness algorithm measures the competitiveness of an individual measured against his 

peers. In predator / prey systems prey animals in the absence of predators will show a 

proportional growth rate. Predators introduced into a prey–rich environment will show a high 

growth rate and will slow the prey growth rate. An overabundance of predators will lead to 

declining numbers of prey, which will, in turn, reduce the number of predators. Lotka–

Volterra’s equations is the basic growth relationship between number of herbivores (H) and 

carnivores(C). 

dH
aH bHC

dt
   

 
dC

cC dHC
dT

    

 

Where HC is the success rate of predation, and a, b, c, d are proportionality constants. HC, as 

defined by Kitching, is a function of several parameters such as detection success, learning by 

prey and predator and hunger. Therefore. Our fitness algorithm must take into account the 

factors that lead to the success of predation. Four different functions are used to determine 

individual success. 

 

(1) Herbivore feeding requirements – Herbivores require an amount of food proportional 

to their mass, 0.75m  Food–rich environments favor larger animals, while food–poor 

environments will favor smaller animals. Accordingly, the success rate of foraging is: 

 0.75* *
K

f b m
Eh

 
  
 

 

 

K  = the carrying capacity of the environment 

Eh  = energy requirement of all herbivores 

b = proportional constant 

m = the mass of the individual 

This function determines the ability of the individual herbivore to successfully forage for 

food. Animals that are well fed are less likely to be caught by predators. 

(2) Carnivore feeding requirements – Carnivores also require food proportional to their 

mass, m0.75. Because they can convert 10%  of herbivore mass into energy, their success rate 

for foraging is : 
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 0.75/ Ec* *
10

Mh
f d m

 
  
 

 

 

 

Mh = Mass of herbivores 

Ec = Energy requirements of all carnivores 

d is a proportional constant 

 

Similar to herbivores, this function also shows the success that a well fed predator is likely to 

have, vis–a–vis, his starving brethren. 

(3) Detection success ratio – The ability of an animal to make or escape detection 

depends upon their sight (s), hearing (h) and camouflage (c) compared to their opponents. 

Herbivore = ( )
h

x s S y zc
H

 
   

 
 

Carnivore =
s h

i j kc
S h

   
    

   
  

 

S,H are mean population values for sight and hearing 

i, j, k, x. y. z are proportional constants 

These factors play into the role of successful search and time of exposure. Again, both 

equations show how an individual must do better not only in absolute terms, but in terms of 

the competition. 

(4) Intelligence success ratio – The intelligence of an individual relative to their 

opponents. Highly intelligent bipedal organisms are given additional credit for tool–use 

capability. 

( )
b

i g c
B

 
  
 

 

b is brain size of individual 

B is average brain size of population 

g is a proportionality constant 

c is 1 for two legged animals, 0 for four legged animals. 

 

Intelligence is a grab–bag of all of the individual’s various abilities to out–wit the opponent. 

The sum of the criteria produces the fitness value for the organism. The fitness value reflects 

the innate ability of an individual to survive the effects of environment and predation. For 

herbivores, this means the ability to avoid predators while successfully competing for limited 

forage resources. Carnivore fitness is measured by the ability to catch the prey and fend off 

fellow carnivores. Once determined, a stochastic remainder selection utilizes the fitness 

values to reproduce and crossover the fittest individuals. A mutation operator randomly 

modifies alleles during crossover. The population size will be determined each generation. 

First, the carrying capacity of the environment is determined for each round simulating the 

random effects of sunshine and rainfall. This value, taken in conjunction with the total mass 

of herbivores from the prior round, will determine the current round’s population size. 

Reproduction and crossover will fill all of the available slots in the population according to 

the dictates of the fitness function for herbivores and carnivores. Because the amount of food 

available to sustain the population is variable particularly for carnivores wild swings in food 

supply could wipe out a particular food source. A photo types speciation operator smoothes 

fitness functions based upon food source mass Animals with different food  sources are 
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considered dissimilar. Mass is apportioned with a linear smoothing. This accords well with 

common sense, since mating individuals that range in size from 5 to 500 kilograms which 

might be inclined to eat the mate are unlikely at best. The expectation is that species should 

form based upon food source and mass. Within each species, there should be improvement in 

the quality of its individuals, with optimizations of prey and predator near the carrying 

capacity of the environment. 

 

2. RESULTS 

 

The following parameters were used in all tests: 

Initial Population size   25 

Generations    100 

Prob. of Crossover   0.6 

Prob. of Mutation   0.001 

 

Two series of tests were conducted. In the first test, the carrying capacity remained constant, 

which led to a static population size. In the second test, the carrying capacity could vary as 

much as 66% from one generation to another, with the population size varying as well. For 

the first test, the carrying capacity remained constant at 1500 kg, and the population size was 

25. For all individuals, the allele values were randomly selected. Figure 5.1 tracks the 

absolute variance between ideal total mass and actual total mass of herbivore and carnivores 

over 100 generations. Over succeeding generations, the population converged to 

approximately 1% variance, while allowing for crossbreeding of herbivores and carnivores. 

The average fitness value of all generations can be seen in Fig. 5.2. A 100% improvement in 

total fitness occurred over 100 generations due to maximizations of values for sight, hearing, 

color and brain size. The speciation algorithm helped to maintain a relatively static number of 

carnivores and herbivores, with the quantity of either food type fluctuating between 8 and 17 

for most of the simulation. At 100 generations, the range of individual’s mass still ran from 

160 to 420 kg. The average mass had gone from 260 kg initially to 320 kg at the end, 

reflecting the higher mass requirements of the herbivore population. Carnivores, which 

depended on herbivores for their food, tended to remain at a lower weight. The average value 

for vision went from 3.7 to 7. The average value for hearing went from 2.7 to 6.7. Brain size 

went from 13.4 to 29.2. Color went from an even distribution to varying shades of green. The 

number of legs per individual went from an even distribution to 90% 2–legged, reflecting 

greater tool use. The second series of tests examined various carrying capacities and 

population sizes. The carrying capacity was allowed to range over 1000 – 1500 kg for each 

generation. The population size was incremented or decremented in proportion to the 

carrying capacity. Again allele values were selected randomly. Figure 5.3 tracks the absolute 

variance between ideal total mass and actual total mass of herbivore and carnivores over 100 

generations. Over succeeding generations the variation did evidence some smoothing but 

remained overall at approximately the 10% level. The average fitness value of all generations 

can be seen in fig. 5.4. A 350% improvement in total fitness occurred over 100 generations 

due to near maximizations of values for sight, hearing, color and brain size. The speciation 

algorithm helped to maintain the relative proportion of carnivores and herbivores, although 

variances were higher than in the static algorithm. Because the food requirements had a much 

greater range, the mass of individuals also evidenced a greater range, from 20 to 420 kg. The 

average mass, which started at 260 kg. Finished at 275 kg. The distribution contained 

substantial accumulation at either extreme. The values for sight, hearing, brain size and color 

mimicked the results of the static run, showing good optimization performance.  
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Fig. 5.1 Actual Variance from Ideal Total Mass for Static Environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.2 Average Fitness Value for Static Environment 
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Fig. 5.3 Actual Variance from Ideal total Mass for Varying Environment 

 

 

Fig. 5.4 Average Fitness Value for Static Environment 
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3. CONCLUSION 

 

The genetic algorithm was able to optimize the static environment’s biomass much better 

than in the dynamic environment. Because herbivores had a constant amount of food to draw 

from, the optimization routine narrowed the mass range of the population considerably. This 

would indicate that less speciation took place in the static environment. The relatively poor 

optimization of biomass in the dynamic environment could be expected, because of the 

additional uncertainty introduced into the herbivore food chain. The algorithm did show 

robustness by quickly recovering from swings in the food supply, due to the wide range of 

body mass preserved by the speciation algorithm. This evidence would seem to accord well 

with observations that changing environmental conditions aggravate the swings of the 

predator–prey cycle. Both environments performed well in optimizing attributes unconcerned 

with food requirements. The values for vision, hearing and brain size all showed 

advancement from average initial values to near optimal values. Genetic algorithms can be a 

useful method for determining optimal biomasses within a static, and to a lesser extent 

dynamic, environment. The use of tools such as speciation more closely mimic natural 

processes, and preserve the diversity necessary for successful response to dynamic 

environmental changes. At the same time, a GA is able to optimize attributes that relate to 

an individual’s fitness. 
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